High temperature transformations and thermal expansion of halotrichite FeAl2 (SO4)4⋅22H2O
- Авторлар: Sheveleva R.M.1,2, Zhitova E.S.1, Kupchinenko A.N.1, Krzhizhanovskaya M.G.2, Nuzhdaev A.A.1
-
Мекемелер:
- Institute of Volcanology and Seismology RAS
- Saint Petersburg State University
- Шығарылым: Том CLIII, № 2 (2024)
- Беттер: 117-129
- Бөлім: МИНЕРАЛЫ И ПАРАГЕНЕЗИСЫ МИНЕРАЛОВ
- URL: https://journals.rcsi.science/0869-6055/article/view/263456
- DOI: https://doi.org/10.31857/S0869605524020077
- EDN: https://elibrary.ru/RMDYPJ
- ID: 263456
Дәйексөз келтіру
Аннотация
Halotrichite is a widespread mineral in post-volcanic environments and oxidation zones of ore deposits. Halotrichite is stable at temperature up to 70 °C; further heating leads to the formation of an X-ray amorphous phase I. There are reflections of millosevichite (prevailing) and mikasaite appearing in the range of temperatures 340–660 °C. Millosevichite and mikasaite are decomposing at temperatures > 660 °C with the formation of an X-ray amorphous phase II. According to data of the synchronous thermal analysis, the transition from halotrichite into anhydrous sulfates is accompanied by the loss of H2O molecules, which makes about 42.9 wt %, the transition to the X-ray amorphous phase II is caused by the loss of SO3, which is ca. 37.4 wt %, associated with two endothermal effects. The thermal expansion of halotrichite is sharply anisotropic, the maximum expansion is determined by the shear deformations of the lattice in its monoclinic plane along the bisectrix of the obtuse angle β, and the minimum one – in the direction of strong S–O–Fe bonds inside [Fe(SO4)(H2O)5]0 complexes. The significant volumetric expansion of halotrichite (9(3)∙10-5 ºC-1) occurs due to the determing role of hydrogen bonds in composition of the crystal structure.
Толық мәтін

Авторлар туралы
R. Sheveleva
Institute of Volcanology and Seismology RAS; Saint Petersburg State University
Хат алмасуға жауапты Автор.
Email: rezeda_marsovna@inbox.ru
Ресей, Petropavlovsk-Kamchatsky; Saint Petersburg
E. Zhitova
Institute of Volcanology and Seismology RAS
Email: rezeda_marsovna@inbox.ru
Ресей, Petropavlovsk-Kamchatsky
A. Kupchinenko
Institute of Volcanology and Seismology RAS
Email: rezeda_marsovna@inbox.ru
Ресей, Petropavlovsk-Kamchatsky
M. Krzhizhanovskaya
Saint Petersburg State University
Email: rezeda_marsovna@inbox.ru
Ресей, Saint Petersburg
A. Nuzhdaev
Institute of Volcanology and Seismology RAS
Email: rezeda_marsovna@inbox.ru
Ресей, Petropavlovsk-Kamchatsky
Әдебиет тізімі
- Abdulina V.R., Siidra O.I. Crystal chemistry and high-temperature X-ray diffraction of hydrated iron sulfate minerals. In: Non-Ambient Diffraction and Nanomaterials (NADM-4): Book of Abstracts IV Conference and School for Young Scientists. Saint Petersburg, 2020. P. 80.
- Active volcanoes of Kamchatka. Vol. 2 Eds. Fedotova S.A. and Masurenkova Yu.P. Moscow: Nauka, 1991. 415 p.
- Bibring J.-P., Arvidson R.E., Gendrin A., Gondet B., Langevin Y., Le Mouelic S., Mangold N., Morris R.V., Mustard J.F., Poulet F., Quantin C., and Sotin C. Coupled ferric oxides and sulfates on the Martian surface. Science. 2007. Vol. 317. P. 1206–1210.
- Bibring J.-P., Langevin Y., Mustard J.F., Poulet F., Arvidson R., Gendrin A., Gondet B., Mangold N., Pinet P., and Forget F. Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science. 2006. Vol. 312. P. 400–404.
- Bruker-AXS. TopasV4.2: General Profile and Structure Analysis Software for Powder Diffraction Data. Karlsruhe, Germany, 2009.
- Bubnova R.S., Filatov S.K. Thermal radiography of polycrystals. Part II. Determination of quantitative characteristics of the thermal expansion tensor: tutorial. Saint Petersburg: Saint Petersburg State University, 2013. 143 p.
- Bubnova R.S., Firsova V.A., Filatov S.K. Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (theta to tensor-TTT). Glass Physics and Chemistry. 2013. Vol. 39. P. 347–350.
- Burns R.G. Ferric sulfates on Mars. J. Geophys. Res. 1987. Vol. 92(B4). P. E570–E574.
- Buzatu A., Dill H.G., Buzgar N., Damian G., Maftei A.E., Apopei A.I. Efflorescent sulfates from Baia Sprie mining area (Romania) — Acid mine drainage and climatological approach. Science of The Total Environment. 2016. Vol. 542. P. 629–641. doi: 10.1016/j.scitotenv.2015.10.139.
- Christidis P.C., Rentzeperis P.J. The crystal structure of rhombohedral Fe2(SO4)3. Zeitschrift fuer Kristallographie. 1976. Vol. 144. P. 341–352.
- Eremin O.V., Epova E.S., Yurgenson G.A., Smirnova O.K. Prognosis of geoecological consequences of development of deposits of the Bom-Gorkhon tungsten deposit (Transbaikalia). Chemistry for Sustainable Development. 2014. Vol. 22. N 2. P. 123–129.
- Filatov S.K. Negative linear thermal expansion of oblique-angle (monoclinic and triclinic) crystals as a common case. Phys. Stat. Solidi. 2008. Vol. 245 (b). N 11. P. 2490–2496.
- Filatov S.K. High-temperature crystal chemistry. Theory, methods and research results. Leningrad: Nedra, 1990. 288 p.
- Frost R.L., Wain D., Martens W.N., Locke A.C., Martinez-Frias J., Rull F. Thermal decomposition and X-ray diffraction of sulphate efflorescent minerals from El Jaroso Ravine, Sierra Almagrera, Spain. Thermochim. Acta. 2007. Vol. 460. N 1–2. P. 9–14.
- Frost R., Palmer S., Kristóf J., Horváth E. Dynamic and controlled rate thermal analysis of halotrichite. J. Therm. Anal. Calorim. 2010. Vol. 99. N 2. P. 501–507.
- Gongalsky B., Krivolutskaya N. The Cu-Ag-Fe Udokan deposit. In: World-class mineral deposits of Northeastern Transbaikalia, Siberia, Russia. Springer, 2019. P. 37–85.
- Kahlenberg V., Braun D.E., Krüger H., Schmidmair D., Orlova M. Temperature-and moisture-dependent studies on alunogen and the crystal structure of meta-alunogen determined from laboratory powder diffraction data. Phys. Chem. Miner. 2017. Vol. 44. P. 95–107.
- Kato E., Daimon K. Crystal structure of anhydrous aluminum sulfate. Yogyo Kyokaishi, 1979. Vol. 87. P. 590–595.
- King P.L., McSween Jr H.Y. Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. J. Geophys. Res. Planets. 2005. 110(E12).
- Košek F., Culka A., Jehlička J. Raman spectroscopic study of six synthetic anhydrous sulfates relevant to the mineralogy of fumaroles. J. Raman Spectroscopy. 2018. Vol. 49. N. 7. P. 1205–1216.
- Kruszewski Ł. Supergene minerals from the burning coal mining dumps in the Upper Silesian Coal Basin, South Poland. Int. J. Coal Geology. 2013. Vol. 105. P. 91–109.
- Krzhizhanovskaya M.G., Sennova N.A., Bubnova R.S., Filatov S.K. Thermal transformations of minerals of the series borax–tinkalconite–kernite. Zapiski VMO (Proc. Russian Miner. Soc.).1999. N 1. P. 115–122 (in Russian).
- Lovas G.A. Structural study of halotrichite from Recsk (Mátra Mts., N-Hungary). Acta Geologica Hungarica. 1986. Vol. 29. P. 389–398.
- Marszałek M., Gaweł A., Włodek A. Pickeringite from the Stone Town nature reserve in Ciężkowice (the Outer Carpathians, Poland). Minerals. 2020. Vol. 10. P. 187.
- McCollom T.M., Robbins M., Moskowitz B., Berquó T.S., Jöns N., Hynek B.M. Experimental study of acid‐sulfate alteration of basalt and implications for sulfate deposits on Mars. J. Geophys. Res. Planets. 2013. Vol. 118. P. 577–614.
- Riaza A., Müller A. Hyperspectral remote sensing monitoring of pyrite mine wastes: a record of climate variability (Pyrite Belt, Spain). Environ Earth Sci. 2010. Vol. 61. P. 575–594.
- Rodríguez A., van Bergen M.J. Superficial alteration mineralogy in active volcanic systems: An example of Poás volcano, Costa Rica. J. Volcanol. Geotherm. Res. 2017. Vol. 346. P. 54–80.
- Sheveleva R.M., Nazarova M.A., Nuzhdaev A.A., Zhegunov P.S., Zhitova E.S. Distribution and chemical composition of halotrichite in geothermal fields of Kamchatka. Bull. of Kamchatka Reg.Assoc.«Educ.-Sci. Center». Earth Sci. 2023. Vol. 58. N 2. P. 5–16 (in Russian).
- Ulloa A., Gázquez F., Sanz-Arranz A., Medina J., Rull F. , Calaforra J.M., Alvarado E.G., Martínez M., Avard G., De Moor J.M., and De Waele J. Extremely high diversity of sulfate minerals in caves of the Irazú Volcano (Costa Rica) related to crater lake and fumarolic activity. Int. J. Speleology. 2018. Vol. 47. P. 229–246.
- Zhitova E.S., Sergeeva A.V., Nuzhdaev A.A., Krzhizhanovskaya M.G., Chubarov V.M. Tschermigite from thermal fields of Southern Kamchatka: high-temperature transformation and peculiarities of IR–spectrum. Zapiski RMO (Proc. Russian Miner. Soc.). 2019. N 1. P. 100–116 (in Russian).
- Zhitova E.S., Sheveleva R.M., Zolotarev A.A., Krivovichev S.V., Shilovskikh V.V., Nuzhdaev A.A., Nazarova M.A. The crystal structure of magnesian halotrichite, (Fe,Mg)Al2(SO4)4·22H2O: hydrogen bonding, geometrical parameters and structural complexity. J. Geosci. 2023. Vol. 68. P. 163–178.
- Zolotarev Jr A.A., Zhitova E.S., Krzhizhanovskaya M.G., Rassomakhin M.A., Shilovskikh V.V., Krivovichev S.V. Crystal chemistry and high-temperature behaviour of ammonium phases NH4MgCl3· 6H2O and (NH4) 2Fe3+5· H2O from the burned dumps of the Chelyabinsk coal basin. Minerals. 2019. Vol. 9(8). P. 486.
Қосымша файлдар
