First findings of platinum group minerals from ultramafites of the Idzhim mafic-ultramafic massif (Western Sayan)

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In plastically deformed harzburgite and dunite of the Idzhim mafic-ultramafic massif, which is part of the Kurtushiba ophiolite belt of the Western Sayan and is one of largest massifs of this belt, platinum group minerals (PGM) were identified for the first time. They were found in pentlandite, awaruite and nickel arsenides (NiS, Ni2S) in form of finely dispersed inclusions, the diagnosis of which, due to their small size, was carried out only qualitatively. Native osmium, Ir-bearing osmium, native ruthenium, garutiite, tetraferroplatinum, unnamed (Pt,Ir)Fe and (Ni,Cu,Pd,Pt)2-3Fe phases, zaccarinite, Ir-bearing erlikmanite and unnamed sulfides with crystal chemical formula Me2S were quantitatively identified and characterized. All PGM grains found are predominantly localized either in peripheral parts of grains of sulfides, awaruite and wairauite, or in silicate matrix in immediate vicinity of these minerals. The platinum group elements (PGE) content and their distribution in restite ultramafic rocks was apparently controlled by partial melting of primary peridotite substrate. During partial melting, the extraction of sulfur and Pt-group platinoides (Pt, Pd, Rh) into the silicate melt led to a decrease in S2 fugacity and the accumulation of Ir-group platinoides (Os, Ir, Ru) in monosulfide solid solution (mss), from which subsequently primary Os-Ir-bearing pentlandite crystallized. The subsequent transformation of this sulfide led to appearance of PGE-containing awaruite and nickel arsenides, as well as to everything discovered diversity of identified PGM.

Texto integral

Acesso é fechado

Sobre autores

А. Yurichev

Tomsk State University

Autor responsável pela correspondência
Email: juratur@yandex.ru
Rússia, Tomsk

А. Chernyshov

Tomsk State University

Email: juratur@yandex.ru
Rússia, Tomsk

Е. Korbovyak

Tomsk State University

Email: juratur@yandex.ru
Rússia, Tomsk

Bibliografia

  1. Alard O., Griffin W.L., Lorand J.P., Jackson S., O᾿Reilly S.Y. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature. 2000. Vol. 407. P. 891–894.
  2. Airiyants E.V., Zhmodik S.M., Belyanin D.K., Agafonov L.V., Ivanov P.O. Mineral inclusions in Fe–Pt solid solution from the alluvial ore occurrences of the Anabar basin (Northeastern Siberian platform). Russian Geol. Geophys. 2014. Vol. 55. N 8. P. 945–958.
  3. Barnes S.J., Naldrett A.J., Gorton M.P. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol. 1985. Vol. 53. P. 303–323.
  4. Daltry V.D.C., Wilson A.H. Review of platinum-group mineralogy: compositions and elemental associations of the PG-minerals and unidentified PGE-phases. Miner. Petrol. 1997. Vol. 60. P. 185–229.
  5. Distler V.V., Grokhovskaya T.L., Evstigneeva T.L., Sluzhenikin S.F., Filimonova A.A., Dyuzhikov O.A., Laputina I.P. Petrology of sulfide igneous ore formation. Moscow: Nauka, 1988. 232 p. (in Russian).
  6. Dobretsov N.L., Ponomareva L.G. Ophiolites and associated glaucophane schists of the Kurtushiba Range. Geol. Geophys. 1976. N. 2. P. 40–53 (in Russian).
  7. Edwards S. Harzburgites and refractory melts in the Lewis Hills massif, Bay of Islands ophiolite complex: the base-metals and precious-metals story. Canad. Miner. 1990. Vol. 28. P. 537–552.
  8. Ertseva L.N., Dyachenko V.T., Sukharev S.V. Restorative heat treatment of pentlandite from pyrrhotite-containing copper-nickel sulfide raw materials. Non-ferrous metals. 1997. N. 6. P. 24–26 (in Russian).
  9. Ferraris C., Lorand J.P. Novodneprite (AuPb3), anyuiite [Au(Pb, Sb)2] and gold micro— and nano-inclusions within plastically deformed mantle-derived olivine from the Lherz peridotite (Pyrenees, France): a HRTEM–AEM–EELS study. Phys. Chem. Miner. 2015. Vol. 42. P. 143–150.
  10. Fonseca R.O.C., Laurenz V., Mallmann G., Luguet A., Hoehne N., Jochum K.P. New constraints on the genesis and long-term stability of Os-rich alloys in the Earth’s mantle. Geochim. Cosmochim. Acta. 2012. Vol. 87. P. 227–242.
  11. Goncharenko A.I. Deformation and petrostructural evolution of alpine-type ultramafic rocks. Tomsk: Publishing House of Tomsk University, 1989. 404 p. (in Russian).
  12. Harris D.C., Cabri L.J., Nomenclature of platinum-group-element alloys: review and revision. Canad. Miner. 1991. Vol. 29. P. 231–237.
  13. Kiseleva O.N., Zhmodik S.M., Agafonov L.V., Belyanin D.K., Damdinov B.B. Composition and evolution of PGE mineralization in chromite ores from the Il’chir ophiolite complex (Ospa-Kitoi and Kharanur areas, East Sayan). Russian Geol. Geophys. 2014. Vol. 55. N 2. P. 259–272.
  14. Leblanc M. Platinum-group elements and gold in ophiolitic complexes: Distribution and fractionation from mantle to oceanic floor. Petrol. Structural Geol. 1991. Vol. 5. P. 231–260.
  15. Lesnov F.P. Petrochemistry of polygenic mafic-hypermafic plutons of folded areas. Novosibirsk: Nauka, 1986. 136 p. (in Russian).
  16. Lesnov F.P., Mongush A.A., Oidup Ch.K., Popov V.A. Structural-genetic relationships of ultramafic and gabbroides in the Kurtushiba ophiolite association (Western Sayan). In: Ultramafic-mafic complexes of Precambrian folded areas. Ulan-Ude: SB RAS, 2005. P. 59–61 (in Russian).
  17. Lesnov F.P., Kuzhuget K.S., Mongush A.A., Oidup Ch.K. Geology, petrology and ore content of mafic-ultramafic massifs of the Tyva Republic. Novosibirsk: Academic publishing house «Geo», 2019. 350 p. (in Russian).
  18. Lorand J., Luguet A. Chalcophile and siderophile elements in mantle rocks: trace elements controlled by trace minerals. Rev. Miner. Geochem. 2016. Vol. 81. P. 441–488.
  19. Luguet A., Lorand J., Alard O., Cottin J. A multi-technique study of platinum group element systematic in some Ligurian ophiolitic peridotites, Italy. Chem. Geol. 2004. Vol. 208. P. 175–194.
  20. Luguet A., Reisberg L. Highly siderophile element and 187Os signatures in noncratonic basalt-hosted peridotite xenoliths: Unravelling the origin and evolution of the Post-Archean lithospheric mantle. Rev. Mineral. Geochem. 2016. Vol. 81. P. 305–367.
  21. Luguet A., Shirey S.B., Lorand J.P., Horan M.F., Carlson R.W. Residual platinum group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochim. Cosmochim. Acta. 2007. Vol. 71. P. 3082–3097.
  22. Makeev A.B., Brianchaninova N.I. Topomineralogy of ultramafic rocks of the Polar Urals. Saint Petersburg: Nauka, 1999. 252 p. (in Russian).
  23. Malevsky A.Yu., Laputina I.P., Distler V.V. Behavior of platinum metals during crystallization of pyrrhotite from a sulfide melt. Geochemistry. 1977. N. 10. P. 1534–1542 (in Russian).
  24. Malitch K.N., Anikina E.V., Badanina I.Y., Pushkarev E.V., Khiller V.V., Belousova E.A. Chemical composition and osmium-isotope systematics of primary and secondary PGM assemblages from high-mg chromitite of the Nurali lherzolite massif, the South Urals, Russia. Geol. Ore Deposits. 2016. Vol. 58. N. 1. P. 1–19.
  25. Malitch K.N., Melcher F., Mühlhans H. Palladium and gold mineralization in podiform chromitite at Kraubath, Austria. Miner. Petrol. 2001. Vol. 73. P. 247–277.
  26. Murzin V.V., Malich K.N., Badanina I.Yu., Varlamov D.A., Chashchukhin I.S. Mineral associations of chromitites of the Alapaevsky dunite-harzburgite massif (Middle Urals). Lithosphere. 2023. Vol. 23. N. 5. P. 740–765 (in Russian).
  27. Novakov R.M., Moskaleva S.V., Ivanov V.V., Palamar S.V. Pentlandites and avaruites of ultramafic massif of Mount Soldatskaya (Cape Kamchatka Peninsula, Eastern Kamchatka). Vestnik KRAUNC. Earth Sci. 2014. N. 2. P. 137–146 (in Russian).
  28. Ohnenstetter M. Platinum group element enrichment in the upper mantle peridotites of the Monte Maggiore Ophiolitic Massif (Corsica, France): mineralogical evidence for ore-fluid metasomatism. Miner. Petrol. 1992. Vol. 46. P. 85–107.
  29. Pavlov N.V. Chemical composition of chromospinelides in connection with the petrographic composition of rocks of ultrabasic intrusives. In: Proc. Geol. Inst. RAS. 1949. Vol. 103. P. 1–91 (in Russian).
  30. Pinus G.V., Velinsky V.V., Lesnov F.P., Bannikov O.L., Agafonov L.V. Alpine-type hypermafic rocks of the Anadyr-Koryak fold system. Novosibirsk: Nauka, 1973. 320 p. (in Russian).
  31. Prichard H., Ixer R., Lord R., Maynard J., Williams N. Assemblages of platinum-group minerals and sulfides in silicate lithologies and chromite-rich rocks within the Shetland ophiolite. Canad. Miner. 1994. Vol. 32. P. 271–294.
  32. Reed S.J.B. Electron microprobe analysis and scanning electron microscopy in geology. N.Y.: Cambridge University Press, 2005. 189 p.
  33. Savelyev D.P., Filosofova T.M. Microinclusions of minerals of platinum group elements and gold in the rocks of the ophiolite complex of the Kamchatsky Mys peninsula. Vestnik KRAUNC. Earth Sci. 2017. N. 2 (34). P. 5–13 (in Russian).
  34. Savelyev D.P., Gataullin R.A. Accessory platinum mineralization in lherzolites of the Northern Kraka massif (Southern Urals). Georesourses. 2023. Vol. 25. N. 3. P. 208–215 (in Russian).
  35. Semenov M.I., Zorina A.N., Kolyamkin V.M., Kachevsky L.K., Krotova T.A., Aleksandrovsky Yu.S. State geological map of the Russian Federation, Scale 1:200,000. Second edition. West Sayan series. Sheet N-46-XXXIV (Turan). Explanatory note. Saint Petersburg: VSEGEI Publishing House, 2019. 188 p. (in Russian).
  36. Sibilev A.K. Petrology and asbestos content of ophiolites (on the example of the Idzhim massif in the Western Sayan). Novosibirsk: Nauka, 1980. 216 p. (in Russian).
  37. Simonov V.A., Chernyshov A.I., Kotlyarov A.V. Mineralogy and genesis of ultramafic rocks of the Kurtushiba ophiolite belt (Western Sayan). Mineralogy. 2022. Vol. 8. N. 2. P. 49–62 (in Russian).
  38. Sobolev V.S., Dobretsov N.L. Petrology and metamorphism of ancient ophiolites (by example of the Polar Urals and Western Sayan). Novosibirsk: Nauka, 1977. 222 p. (in Russian).
  39. Stockman H.V., Hlava P.F. Platinum-group minerals in Alpine chromitites from Southwestern Oregon. Econ. Geol. 1984. Vol. 79. P. 491–508.
  40. Tolstykh N.D. Platinum mineralization of the Konder and Inagli massifs. Geosphere research. 2018. N. 1. P. 17–32 (in Russian).
  41. Yurichev A.N., Chernyshov A.I. Platinum-bearing of chromitites of the Kurtushibinsky ophiolite belt (Western Sayan): new data. Zapiski RMO (Proc. Russian Miner. Soc.). 2019. N. 5. Vol. 148. P. 113–125 (in Russian, English translation: Geol. Ore Deposits. 2020. Vol. 62. N 8. Р. 787–795).
  42. Yurichev A.N., Chernyshov A.I., Korbovyak E.V. First finds of platinum group minerals in ultramafites of the Kizir-Burluksky massif (Western Sayan). Zapiski RMO (Proc. Russian Miner. Soc.). 2021. Vol. 150. N 4. P. 77–91 (in Russian).
  43. Zhou M.-F., Lewis J., Malpas J., Munoz-Gomez N. The Mayari–Baracoa Paired Ophiolite Belt, Eastern Cuba: Implications for tectonic settings and platinum-group elemental mineralization. Int. Geol. Rev. 2001. Vol. 43. P. 494–507.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic geological map of the Idzhim massif (Goncharenko, 1989, with additions by authors). 1 — ultramafic rocks: harzburgites, dunites, serpentinites; 2 — gabbroides (D); 3 — Shishtyk Formation: sandstones (S2); 4 — Amyl Formation: orthoschists and paraschists (Є2); 5 — Alasug Formation: metamorphosed conglomerates, gravelstones, sandstones, siltstones, shales (Є2-3); 6 — Tereshkinskaya Formation: siltstones, cherts, tuff sandstones, tuff conglomerates, algal limestones, porphyrites and their tuffs (Є1); 7 — Chinga Formation: spilite-diabase formation and carbonaceous-siliceous shales (Є1ch1); 8 — lines of tectonic contact (solid — reliable, dotted — assumed); 9 — tectonic blocks (I — Tikhovsky, II — Oreshsky (Koyardsky), III — Omulsky, IV — Idzhimsky, V — Sinyukhinsky); 10 — sampling sites. The inset shows of the Idzhim massif in structure of the Kurtushiba ophiolite belt of Western Sayan (Sibilev, 1980; Simonov et al., 2022, with corrections by authors). 1 — ultramafites; 2 — gabbroides, dike complex; 3 — diabase sequence, carbonaceous-siliceous shales (Chinga and Nizhnii Monok formations); 4 — postorogenic granites; 5 — ultramafic massifs (И — Idzhim, K — Kalninsky, E — Ergaksky, Kб — Kizir-Burluksky).

Baixar (906KB)
3. Fig. 2. Micrographs of plastically deformed ultramafites without analyzer (left) and with analyzer (right). а–б, hypidiomorphic grained harzburgites (samples 14 and 112, respectively), c, porphyroleistic dunite (sample 160). Ol — olivine, Opx — orthopyroxene, Serp — serpentine, Chl — chlorite, CrSp — chrome spinel, CrMgt — chromomagnetite.

Baixar (3MB)
4. Fig. 3. Ternary diagrams for ultramafites of the Idzhim massif. a, composition of accessory chromospinelides from harzburgite (white circles) and dunite (gray circles) on classification diagram by N.V. Pavlov (1949) (1 — chromite, 2 — subferrichromite, 3 — aluminochromite, 4 — subferrialumochromite, 5 — ferrialumochromite, 6 — subaluminoferrichromite, 7 — ferrichromite, 8 — chromopicotite, 9 — subferrichromopicotite, 10 — subalumochromomagnetite, 11 — chromomagnetite, 12 — picotite, 13 — magnetite); б, composition of microinclusions of Os–Ir–Ru in pentlandite and avaruite from harzburgites on еру classification triangle (Harris, Cabri, 1991).

Baixar (103KB)
5. Fig. 4. Microinclusions of Os–Ir–Ru in pentlandites and avaruites from plastically deformed harzburgites. BSE images. Avr — avaruite (Ni2-3Fe), Pn — pentlandite (Fe,Ni)9S8, Ol — olivine, Serp — serpentine. The red circle with number is a target of analysis and its number.

Baixar (845KB)
6. Fig. 5. Microphotographs of Os–Ir metallic solid solutions and Os–Ir sulfides in wairauites and pentlandites from plastically deformed harzburgites of the Idzhim massif. BSE images. Vair — wairauite (CoFe), Co-Pn — cobalt pentlandite (Fe,Ni,Co)9S8, СrSp — chrome spinel, Chl — chlorite.

Baixar (809KB)
7. Fig. 6. Accessory PGE in plastically deformed harzburgites and dunites. BSE images. Grt — garutite (Ni,Fe,Ir), Zcr — zaccarinite (RhNiAs), Cu-Pn — cupropentlandite (CuFe5Ni3S8).

Baixar (932KB)
8. Fig. 7. Scheme of the formation of PGM. Bold font in circles shows identified minerals; italics in circles indicate minor PGE in minerals.

Baixar (307KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».