New Zr–Hf Geothermometer for Magmatic Zircons


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A geothermometer equation \(T = \frac{{1531}} {{\ln K_d + 0.883}}\), where \(K_{\dot d} = \frac{{X_{Zr}^S X_{Hf}^m }} {{X_{Zr}^m X_{Hf}^s }}\) [Xji is the concentration (in ppm) of component i in phase j] is the Zr and Hf distribution coefficient between melt and zircon, and T is temperature in K, was derived by thermodynamic processing of literature experimental data on Zr and Hf distribution between acid melts (m) and zircon (s) and on the solubility of zircon and hafnon in the melts with variable silica content. In calculations with this equations, we assumed the Zr concentration in zircon to be constant: 480000 ppm. It is shown that the commonly observed increase in Hf concentration from the cores to margins of magmatic zircon crystals is caused by the fractional crystallization of zircon. For differentiated acid magmatic series, the initial crystallization temperature of zircon in the least silicic cumulates should be evaluated using the cores of large zircon grains with the highest Zr/Hf ratio. Application of the geothermometer for mafic and intermediate rocks may be hampered due to simultaneous crystallization of zircon with some other ore and mafic minerals relatively enriched in Zr and Hf. The newly derived geothermometer has some advantages over other indicators of the crystallization temperature of magmatic zircon based on the zircon saturation index (Watson and Harrison, 1983; Boehnke et al., 2013) and on Ti concentration in this mineral (Ferry and Watson, 2007) as it does not depend on the major-oxide melt composition and on the accuracy of the estimated SiO2 and TiO2 activities in the melts. Calculations of the Zr and Hf fractionation trends in the course of zircon crystallization in granitoid melts allow one to evaluate the temperature at which more evolved melt portions were segregated.

Sobre autores

L. Aranovich

Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM)

Autor responsável pela correspondência
Email: lyaranov@igem.ru
Rússia, Moscow, 119017

N. Bortnikov

Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM)

Email: lyaranov@igem.ru
Rússia, Moscow, 119017


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies