Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 26, No 6 (2018)

Article

Conditions of Formation of Iron–Carbon Melt Inclusions in Garnet and Orthopyroxene under P-T Conditions of Lithospheric Mantle

Bataleva Y.V., Palyanov Y.N., Borzdov Y.M., Novoselov I.D., Bayukov O.A., Sobolev N.V.

Abstract

Of great importance in the problem of redox evolution of mantle rocks is the reconstruction of scenarios of alteration of Fe0- or Fe3C-bearing rocks by oxidizing mantle metasomatic agents and the evaluation of stability of these phases under the influence of fluids and melts of different compositions. Original results of high-temperature high-pressure experiments (P = 6.3 GPa, T = 1300–1500°С) in the carbide–oxide–carbonate systems (Fe3C–SiO2–(Mg,Ca)CO3 and Fe3C–SiO2–Al2O3–(Mg,Ca)CO3) are reported. Conditions of formation of mantle silicates with metallic or metal–carbon melt inclusions are determined and their stability in the presence of CO2-fluid representing the potential mantle oxidizing metasomatic agent are estimated. It is established that garnet or orthopyroxene and CO2-fluid are formed in the carbide–oxide–carbonate system through decarbonation, with subsequent redox interaction between CO2 and iron carbide. This results in the formation of assemblage of Fe-rich silicates and graphite. Garnet and orthopyroxene contain inclusions of a Fe–C melt, as well as graphite, fayalite, and ferrosilite. It is experimentally demonstrated that the presence of CO2-fluid in interstices does not affect on the preservation of metallic inclusions, as well as graphite inclusions in silicates. Selective capture of Fe–C melt inclusions by mantle silicates is one of the potential scenarios for the conservation of metallic iron in mantle domains altered by mantle oxidizing metasomatic agents.

Petrology. 2018;26(6):565-574
pages 565-574 views

Phase Relations in the Harzburgite–Hydrous Carbonate Melt at 5.5–7.5 GPa and 1200–1350°С

Kruk A.N., Sokol A.G., Palyanov Y.N.

Abstract

Phase relations are studied experimentally in the harzburgite–hydrous carbonate melt system, the bulk composition of which represents primary kimberlite. Experiments were carried out at 5.5 and 7.5 GPa, 1200–1350°С, and \({{X}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) = 0.39–0.57, and lasted 60 hours. It is established that olivine–orthopyroxene–garnet–magnesite–melt assemblage is stable within the entire range of the studied parameters. With increase of temperature and \({{X}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) in the system, Ca# in the melt and the olivine fraction in the peridotite matrix significantly decrease. The composition of silicate phases in run products is close to those of high-temperature mantle peridotite. Analysis of obtained data suggest that magnesite at the base of subcontinental lithosphere could be derived by metasomatic alteration of peridotite by asthenospheric hydrous carbonate melts. The process is possible in the temperature range typical of heat flux of 40–45 mW/m2, which corresponds to the conditions of formation of the deepest peridotite xenoliths. Crystallization of magnesite during interaction with peridotite matrix can be considered as experimentally substantiated mechanism of CO2 accumulation in subcratonic lithosphere.

Petrology. 2018;26(6):575-587
pages 575-587 views

Phase Relations in the Model System SiO2–MgO–Cr2O3: Evidence from the Results of Experiments in Petrologically Significant Sections at 12–24 GPa and 1600°C

Matrosova E.A., Bobrov A.V., Bindi L., Irifune T.

Abstract

The new results of an experimental study of the majorite MgSiO3–magnesiochromite MgCr2O4 model section are discussed, and general topology of the SiO2–MgO–Cr2O3 system is analyzed. Despite the absence of some petrogenic components (CaO, FeO, Al2O3, Na2O, K2O, and others) in this system, our study, performed in wide pressure range (10–24 GPa), allows us to consider all of the most important phase transformations (in this case, magnesium silicates and oxides) in the upper mantle, transition zone, and uppermost lower mantle. Addition of Cr shows the influence of a minor element on the phase transition parameters. New data on the solubility of Cr in deep minerals (garnet, olivine, wadsleyite, ringwoodite, and bridgmanite) were obtained, which allowed us to determine the influence of Cr on the structural patterns of the major mantle phases. It is shown that addition of 1 wt % Cr2O3 shifts the boundaries of phase transformations by 50 km (olivine/wadsleyite) and 10 km (wadsleyite/ringwoodite) to a lower-pressure domain in comparison with Cr-free systems. In a first approximation, the results of experimental study of phase relations in pseudobinary sections of the SiO2–MgO–Cr2O3 system simulate the phase composition of the restitic part of the upper mantle, transition zone, and uppermost lower mantle under partial melting conditions. It is shown that the Cr concentration in mantle phases is significantly controlled by the Cr/Al ratio in the protolith.

Petrology. 2018;26(6):588-598
pages 588-598 views

Experimental Evidence for Opposite Fluxes of Sodium, Potassium, and CO2 during Glaucophane Schist Interaction with Harzburgite and Websterite in Subduction Zones

Perchuk A.L., Yapaskurt V.O., Zinovieva N.G., Shur M.Y.

Abstract

This paper reports the results of high-pressure experimental modeling of interaction between glaucophane schist and harzburgite or websterite for the evaluation of the influence of mantle material on the input–output of components and character of metasomatic transformations at the crust–mantle boundary in the subduction zone. In all experiments, glaucophane schist (proxy for oceanic crust) containing volatile components (H2O and CO2) incorporated in hydrous minerals (amphiboles, phengite, and epidote) and calcite was loaded into the bottom of each capsule and overlain by mantle material. During the experiments at a temperature of 800°C and a pressure of 2.9 GPa, which correspond to the conditions of a hot subduction zone, the schist underwent partial (up to 10%) eclogitization with the formation of the anhydrous assemblage omphacite + garnet + quartz ± magnesite ± potassic phase. Carbonate and a potassic phase were formed only in the experiments with websterite in the upper layer. A reaction zone was formed at the base of the websterite layer, where newly formed omphacite, quartz, and orthopyroxene replaced in part initial pyroxenes. Orthopyroxene and phlogopite (or an unidentified potassic phase) were formed in the reaction zone at the base of the harzburgite layer; among the initial minerals, only orthopyroxene relicts were preserved. Above the reaction zones produced by diffusion metasomatism, new phases developed locally, mainly at grain boundaries: newly formed orthopyroxene and magnesite were observed in harzburgite, and omphacite and quartz, in websterite. Alterations along grain boundaries extended much further than the reaction zones, which indicates that fluid infiltration dominated over diffusion in the experiments. The experiments demonstrated that the H2O–CO2 fluid with dissolved major components released from the glaucophane schist can produce mineral assemblages of different chemical compositions in mantle materials: Na-bearing in websterite and K-bearing in harzburgite. The complementary components, K2O and CO2 for the websterite layer and Na2O for the harzburgite layer, are fixed in the initial glaucophane schist layer. The distinguished separation of alkalis and CO2 at the crust–mantle boundary can affect the character of metasomatism in the mantle wedge, primary magma compositions, and the chemical evolution of the rocks of the subducting slab.

Petrology. 2018;26(6):599-616
pages 599-616 views

Thermal and Fluid Effects of Granitoid Intrusions on Granulite Complexes: Examples from the Southern Marginal Zone of the Limpopo Complex, South Africa

Safonov O.G., van Reenen D.D., Yapaskurt V.O., Varlamov D.A., Mityaev A.S., Butvina V.G., Golunova M.A., Belyanin G.A., Smit C.A.

Abstract

The paper summarizes data on the petrology of granitoid intrusions in the Southern Marginal Zone (SMZ) of the Neoarchean Limpopo granulite complex, South Africa, and discusses the thermal and fluid effects of these intrusions on the granulites. The intrusions were emplaced in SMZ at 2680–2640 Ma, when the granulite complex was overthrust on the rocks of the adjacent Kaapvaal Craton. The mineral assemblages of the granitoids reflect temperatures above 900°C for the magmas that crystallized under pressures of 6–9 kbar. The granitoid magmas assimilated host rocks and were thereby enriched in MgO, FeO, and Al2O3, which was favorable for the crystallization of garnet, spinel, sillimanite, and corundum in the granitoids. Fluid inclusions in the granitoids and estimates of the fluid composition based on mineral equilibria indicate that the CO2/H2O ratio of the fluids broadly varied. Along with H2O–CO2 fluid, the magmas carried H2O–salt fluids, which penetrated the host rocks and triggered various metasomatic reactions in them. The thermal effects of the intrusions on the host granulites resulted in the development of partial melting zones that host orthopyroxene with >7 wt % Al2O3. Depending on the fluid regime and temperature, the orthopyroxene is found in equilibrium with either garnet and potassic feldspar or with biotite. The ages of the partial melting zones are comparable with those of the intrusions.

Petrology. 2018;26(6):617-639
pages 617-639 views

Reduced Fluids and Sulfide–Metal Alloy in the Magnesian Basalts of Disko Island, West Greenland

Solovova I.P., Averin A.A., Magazina L.O.

Abstract

This paper presents the results of a combined study of the composition and physical properties of fluid, melt and opaque mineral inclusions in olivine phenocrysts and glass from the magnesian basalt of Disko I., West Greenland. The rock is dominated by glass, which contains numerous fluid bubbles and large (up to 250 μm) opaque globules. The thermometric investigation of the melt inclusions showed that the temperature of olivine crystallization was no higher than 1220°C at a pressure of 0.15–0.20 GPa. The opaque globules in the groundmass glass have a eutectoid structure and are composed of troilite, Fe–Ni metal alloy, and sparse grains of wüstite and cohenite (Fe3C). Cryometric measurements and Raman spectroscopy indicated a complex fluid composition and presence of reduced and oxidized gases: CH4, N2, H2, CO2, and H2O, as well as highly ordered graphite. The nonequilibrium association of compounds in the fluid is related to the rapid cooling (quenching) of crystallizing magma preventing the equilibration of the gas system. At an estimated logfO2 value of –13.95, methane is the only hydrocarbon phase that can exist at magmatic temperatures. The formation of organic substances detected in some gas bubbles in the groundmass glasses of the rock occurred at postmagmatic stages after a significant decrease in temperature.

Petrology. 2018;26(6):640-649
pages 640-649 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies