


卷 25, 编号 6 (2017)
- 年: 2017
- 文章: 5
- URL: https://journals.rcsi.science/0869-5911/issue/view/10975
Article
Petrographic-geochemical types of Triassic alkaline ultramafic rocks in the Northern Anabar province, Yakutia, Russia
摘要
A classification suggested for alkaline ultramafic rocks of the Ary-Mastakh and Staraya Rechka fields, Northern Anabar Shield, is based on the modal mineralogical composition of the rocks and the chemical compositions of their rock-forming and accessory minerals. Within the framework of this classification, the rocks are indentified as orangeite and alkaline ultramafic lamprophyres: aillikite and damtjernite. To estimate how much contamination with the host rocks has modified their composition when the diatremes were formed, the pyroclastic rocks were studied that abound in xenogenic material (which is rich in SiO2, Al2O3, K2O, Rb, Pb, and occasionally also Ba) at relatively low (La/Yb)PM, (La/Sm)PM, and not as much also (Sm/Zr)PM and (La/Nb)PM ratios. The isotopic composition of the rocks suggests that the very first melt portions were of asthenospheric nature. The distribution of trace elements and REE indicates that one of the leading factors that controlled the diversity of the mineralogical composition of the rocks and the broad variations in their isotopic–geochemical and geochemical characteristics was asthenosphere–lithosphere interaction when the melts of the alkaline ultramafic rocks were derived. The melting processes involved metasomatic vein-hosted assemblages of carbonate and potassic hydrous composition (of the MARID type). The alkaline ultramafic rocks whose geochemistry reflects the contributions of enriched vein assemblages to the lithospheric source material, occur in the northern Anabar Shield closer to the boundary between the Khapchan and Daldyn terranes. The evolution of the aillikite melts during their ascent through the lithospheric mantle could give rise to damtjernite generation and was associated with the separation of a C–H–O fluid phase. Our data allowed us to distinguish the evolutionary episodes of the magma-generating zone during the origin of the Triassic alkaline ultramafic rocks in the northern Anabar Shield.



2.5 Ga gabbro-anorthosites in the Belomorian Province, Fennoscandian Shield: Petrology and tectonic setting
摘要
The Vorochistoozersky, Nizhnepopovsky, and Severo-Pezhostrovsky gabbro-anorthosite massifs have been studied in the central part of the Belomorian Province, Fennoscandian Shield. The similarity of geological setting and rock composition of these massifs suggests their affiliation to a single complex. The age of the gabbro-anorthosites was determined by U-Pb (SHRIMP II) zircon dating of gabbro-pegmatites from the Vorochistoozersky massif at 2505 ± 8 Ma. The studied massifs were overprinted by the high-pressure amphibolite facies metamorphism. Relicts of magmatic layering and primary magmatic assemblages preserved in the largest bodies. The massifs consist mainly of leucocratic gabbros but also contain rocks of the layered series varying in composition from olivinite to anorthosite. The presence of troctolites in the layered series indicates the stability of the olivine–plagioclase liquidus assemblage and, respectively, shallow depths of melt crystallization. Despite the composition differences between gabbro-anorthosites of the Belomorian and peridotite–gabbronorite intrusions Kola provinces, these simultaneously formed massifs presumably mark a single great igneous event. It also includes the gabbronorite dikes in the Vodlozero terrane of the Karelian province, the Mistassini swarm in the Superior province, and the Kaminak swarm in the Hearne Craton, Canadian Shield. The large igneous province of age ~2500 Ma reflects the oldest stage of within-plate magmatism after a consolidation of the Neoarchean crust of the Kenorland Supercontinent (Superia supercraton).



Petrology of mafic enclaves in the 2006–2012 eruptive products of Bezymianny Volcano, Kamchatka
摘要
This paper reports the results of the first comprehensive petrological study of mafic enclaves widespread in the products of recent (2006–2012) eruptions of Bezymianny Volcano, Kamchatka. Four types of mafic enclaves were distinguished on the basis of the composition and morphology of minerals, P–T conditions of formation of mineral assemblages, and structural and textural characteristics of the rocks. Disequilibrium assemblages of mafic enclaves indicate a complex structure of the magmatic plumbing system of the volcano, including a shallow chamber with andesite–basaltic andesite magmas and a deep reservoir filled in part with plagioclase–hornblende cumulates and fed by basic magmas with mantle harzburgite xenoliths. The mafic enclaves were formed at different levels of the magmatic plumbing system of the volcano and correspond to different degrees of mixing of interacting magmas. The most abundant enclaves were formed during magma ascent from the deep reservoir (960–1040°C, 5–9 kbar) into the shallow andesitic chamber (940–980°C). Enclaves of plagioclase–hornblende cumulates from the basic magmas feeding the deep reservoir (T > 1090°C and P > 9 kbar) are much less common.



Geodynamics of the origin of granulites in the Sangilen block of the Tuva–Mongolian terrane, Central Asian Orogenic Belt
摘要
The Tuva–Mongolian terrane of the Central Asian Orogenic Belt is a composite structure with a Vendian–Cambrian terrigenous–carbonate cover. The Sangilen block in the southern part of the belt is a smaller composite structure, in which tectono–stratigraphic complexes of different age that were produced under various conditions were amalgamated in the course of Early Paleozoic tectonic cycle. The P–T parameters of the Early Paleozoic metamorphism in the western part of the Sangilen block corresponded to the amphibolite facies. The gneisses of the Erzin Complex contain relict granulite-facies mineral assemblages. The granulites are dominated by metasediments typical of deep-water basins on passive continental margins. The only exception is granulites of the Lower Erzin tectonic nappe of the Chinchlig thrust system: these rocks are metatholeiites, tonalites, and trondhjemites, whose REE patterns are similar to those of MORB. The composition of these granulites and their high Sm/Nd ratios indicate that the rocks were derived from juvenile crust that had been formed in an environment of a mature island arc or backarc basin. It is reasonable to believe that these rocks are fragments of the Late Riphean basement of the Sangilen block. The average 206Pb/238U zircon age of the garnet–hypersthene granulites is 494 ± 11 Ma. With regard for the zircon age of the postmetamorphic granitoids, the granulite-facies metamorphism occurred within the age range of 505–495 Ma. The peak metamorphic temperature reached 910–950°C, and the pressure was 3–4 kbar, which corresponds to ultrahigh-temperature/low-pressure (UHT–LP) metamorphism. The garnet–hypersthene orthogranulites were formed at a temperature that decreased to ~850°C and pressure that increased to ~5.5‒7 kbar. It can be hypothesized that the earlier UHT–LP granulites were produced at an elevated heat flux and were later (in the course of continuing collision) overlain by a relatively cold tectonic slab, and this leads to a certain temperature decrease and pressure increase. This relatively cold slab could consist of fragments of the Vendian elevated-pressure metamorphic belt whose development terminated at the Vendian–Cambrian boundary before the onset of the Early Paleozoic regional metamorphism.



Hydrosilicate liquids in the system rare-metal granite–Na2O–SiO2–H2O as accumulators of ore components at high pressure and temperature
摘要
Experimental investigations in the system rare-metal granite–Na2O–SiO2–H2O with the addition of aqueous solutions containing Rb, Cs, Sn, W, Mo, and Zn at 600°C and 1.5 kbar showed that the typical elements of rare-metal granites (Li, Rb, Cs, Be, Nb, and Ta) are preferentially concentrated in hydrosilicate liquids coexisting with aqueous fluid. The same behavior is characteristic of Zn and Sn, the minerals of which are usually formed under hydrothermal conditions. In contrast, Mo and W are weakly extracted by hydrosilicate liquids and almost equally distributed between them and aqueous fluids. Liquids similar to those described in this paper are formed during the final stages of magmatic crystallization in granite and granitepegmatite systems. The formation of hydrosilicate liquids in late magmatic and postmagmatic processes will be an important factor controlling the redistribution of metal components between residual magmatic melts, minerals, and aqueous fluids and, consequently, the mobility of these components in fluid-saturated magmatic systems enriched in rare metals.


