Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 24, № 6 (2016)

Article

Age and sources of the anorthosites of the Neoarchean Kolmozero-Voron’ya greenstone belt (Fennoscandian Shield)

Vrevskii A.

Аннотация

New data are reported on U-Pb (SHRIMP-II) age (2662 ± 7 Ma), isotope (Sm-Nd) and geochemical compositions of the anorthosites of the Patchemvarek Massif and “ovoidal” anorthosite sills of the Neoarchean Kolmozero-Voron’ya greenstone belt. Mesoarchean (2938 ± 8 Ma) zircons found in the Patchemvarek anorthosite have low Th/U ratio, are overgrown by a thin rim, and may be interpreted as xenogenic crystals assimilated by primary melts of the gabbro-anorthosite massifs from host Mesoarchean tonalites during crystallization in a magmatic chamber. The “ovoidal” anorthosite sills are dated at 2730–2740 Ma on the basis of U-Pb local zircon isotope analysis. The sills of the “ovoidal” anorthosites in the Kolmozero-Voron’ya GSB represent the older (2730–2740 Ma) rock group, which differs from the Patchemvarek anorthosites in strongly depleted Nd isotope composition and some geochemical features. In terms of age and Sm-Nd isotope characteristics, the “ovoidal” anorthosites are close to the komatiites of the lower volcanogenic sequence (εNd(Т) + 3.0–3.2), and metaandesites (2778 ± 5.4 Ma, U-Pb TIMS, εNdТ + 3.5) and metatholeiites of the upper volcanogenic sequence (εNd(Т) + 3.5–3.7) of the supracrustal complex of the Kolmozero-Voron’ya GSB.

Petrology. 2016;24(6):527-542
pages 527-542 views

Age and sources of the Paleoproterozoic premetamorphic granitoids of the Goloustnaya block of the Siberian craton: Geodynamic applications

Donskaya T., Gladkochub D., Mazukabzov A., Lepekhina E.

Аннотация

This paper reports the results of geological, geochronological, and isotope geochemical investigations of two premetamorphic granite massifs of the Goloustnaya block of the Baikal salient of the basement of the Siberian craton and granite gneisses from the migmatite–gneiss sequence of this block. The U–Pb zircon age of the granites of the Khomut massif is 2153 ± 11 Ma. The age of the Elovka massif was previously determined by us as 2018 ± 28 Ma. The Khomut and Elovka granites underwent structural and metamorphic transformations accompanied by migmatization. An age of 1.98–1.97 Ga was obtained for the structural and metamorphic processes in the Goloustnaya block from the analysis of margins of zircon grains from the Khomut granites and zircon from the granite gneisses. The biotite granites of the Khomut massif show transitional I–S-type geochemical characteristics, which allowed us to suggest that they were derived by melting of a crustal source of intermediate–acid composition. The Khomut granites show positive εNd(T) values from +2.0 to +2.2 and a Nd model age of 2.4 Ga, which may indicate their formation owing to the reworking of the Paleoproterozoic juvenile continental crust. The combined isotope geochemical data are consistent with collision of island arcs as a possible environment for the formation of the Khomut granites. The formation of these granites was not related to the development of the structure of the Siberian craton, similar to a few other anorogenic magmatic complexes of the margin of the Chara–Olekma terrane of the Aldan shield with ages of ~2.2–2.1 Ga, including the granites of the Katugin complex. The biotite–amphibole granites of the Elovka massif with an age of ~2.02 Ga are geochemically similar to I-type granites. The geochemical characteristics of these granites, including elevated Sr and Ba and low Nb and Ta contents, were inherited from a subduction-related source. Negative εNd(T) values from–0.9 to–1.8 and rather high contents of K2O and Th allow us to suppose a metamagmatic crustal source for the granites of the Elovka massif. The combined isotope geochemical characteristics of the Elovka granites suggest that a mature island arc or an active continental margin is the most probable environment of their formation. The estimates of the age of structural and metamorphic processes affecting the Goloustnaya block (1.98–1.97 Ga) coinciding with the time of similar transformations in the central part of the Aldan shield and eastern Anabar shield (1.99–1.96 Ga) indicate wide occurrence of collisional events of similar age in the Siberian craton and allow us to consider this age interval as an early large-scale stage of the formaiton of the structure of the Siberian craton.

Petrology. 2016;24(6):543-561
pages 543-561 views

Kimberlite age in the Arkhangelsk Province, Russia: Isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite

Larionova Y., Sazonova L., Lebedeva N., Nosova A., Tretyachenko V., Travin A., Kargin A., Yudin D.

Аннотация

The paper reports detailed data on phlogopite from kimberlite of three facies types in the Arkhangelsk Diamondiferous Province (ADP): (i) massive magmatic kimberlite (Ermakovskaya-7 Pipe), (ii) transitional type between massive volcaniclastic and magmatic kimberlite (Grib Pipe), and (iii) volcanic kimberlite (Karpinskii-1 and Karpinskii-2 pipes). Kimberlite from the Ermakovskaya-7 Pipe contains only groundmass phlogopite. Kimberlite from the Grib Pipe contains a number of phlogopite populations: megacrysts, macrocrysts, matrix phlogopite, and this mineral in xenoliths. Phlogopite macrocrysts and matrix phlogopite define a single compositional trend reflecting the evolution of the kimberlite melt. The composition points of phlogopite from the xenoliths lie on a single crystallization trend, i.e., the mineral also crystallized from kimberlite melt, which likely actively metasomatized the host rocks from which the xenoliths were captured. Phlogopite from volcaniclastic kimberlite from the Karpinskii-1 and Karpinskii-2 pipes does not show either any clearly distinct petrographic setting or compositional differentiation. The kimberlite was dated by the Rb–Sr technique on phlogopite and additionally by the 40Ar/39Ar method. Because it is highly probable that phlogopite from all pipes crystallized from kimberlite melt, the crystallization age of the kimberlite can be defined as 376 ± 3 Ma for the Grib Pipe, 380 ± 2 Ma for the Karpinskii-1 pipe, 375 ± 2 Ma for the Karpinskii-2 Pipe, and 377 ± 0.4 Ma for the Ermakovskaya-7 Pipe. The age of the pipes coincides within the error and suggests that the melts of the pipes were emplaced almost simultaneously. Our geochronologic data on kimberlite emplacement in ADP lie within the range of 380 ± 2 to 375 ± Ma and coincide with most age values for Devonian alkaline–ultramafic complexes in the Kola Province: 379 ± 5 Ma; Arzamastsev and Wu, 2014). These data indicate that the kimberlite was formed during the early evolution of the Kola Province, when alkaline–ultramafic complexes (including those with carbonatite) were emplaced.

Petrology. 2016;24(6):562-593
pages 562-593 views

Protolith age of eclogites from the southern part of Pezhostrov Island, Belomorian belt: Protolith of metabasites as indicator of eclogitization time

Skublov S., Berezin A., Melnik A., Astafiev B., Voinova O., Alekseev V.

Аннотация

Several types of metabasites of different age were identified in the southern part of Pezhostrov Island: eclogites with a magmatic protolith age of about 2200 Ma and 2500 Ma old metagabbroanorthosites that retained no eclogitic assemblage. It is shown that the Paleoproterozoic eclogites dominate volumetrically over Archean eclogites in the Belomorian eclogitic province. Eclogites with the youngest Jatulian protolith age (no older than 2200 Ma) occur with the same frequency as those with the Archean protolith age. A new find of eclogites with a Paleoproterozoic age of magmatic protolith and generalization of accumulated geochronological data confirm the recognition of an extended zone of high-pressure metamorphism with an age around 1900 Ma in the Belomorian mobile belt.

Petrology. 2016;24(6):594-607
pages 594-607 views

Lamprophyres of the Tomtor Massif: A result of mixing between potassic and sodic alkaline mafic magmas

Panina L., Rokosova E., Isakova A., Tolstov A.

Аннотация

The paper presents data on inclusions in minerals of the least modified potassic lamprophyres in a series of strongly carbonatized potassic alkaline ultramafic porphyritic rocks. The rocks consist of diopside, kaersutite, analcime, apatite, and rare phlogopite and titanite phenocrysts and a groundmass, which is made up, along with these minerals, of potassic feldspar and calcite. The diopside and kaersutite phenocrysts display unsystematic multiple zoning. Chemically and mineralogically, the rock is ultramafic foidite and most likely corresponds to monchiquite. Primary and secondary melt inclusions were found in diopside, kaersutite, apatite, and titanite phenocrysts and are classified into three types: sodic silicate inclusions with analcime, potassic silicate inclusions with potassic feldspar, and carbonate inclusions, which are dominated by calcite. Heating and homogenization of the inclusions show that the potassic lamprophyres crystallized from a heterogeneous magma, with consisted of mixing mafic sodic and potassic alkaline magmas enriched in a carbonatite component. The composition of the magmas was close to nepheline and leucite melanephelinite. The minerals crystallized at 1150–1090°C from the sodic melts and at 1200–1250°C from the potassic ones. The sodic mafic melts were richer in Fe than the potassic ones, were the richest in Al, Mn, SO3, Cl, and H2O and poorer in Ti and P. The potassic mafic melts were not lamproitic, as follows from the presence of albite in the crystallized primary potassic melt inclusions. The diopside, the first mineral to crystallize in the rock, started to crystallize in the magmatic chamber from sodic mafic melt and ended to crystallize from mixed sodic–potassic melts. The potassic mafic melts were multiply replenished in the chamber in relation to tectonic motions. The ascent of the melts to the surface and rapidly varying P–T parameters of the magma were favorable for multiple separations of carbonatite melts from the alkaline mafic ones and their mixing and mingling.

Petrology. 2016;24(6):608-625
pages 608-625 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».