Метаультрамафиты максютовского комплекса, Южный Урал: высокобарный Si-Al метасоматоз и карбонатизация на границе Кора–Мантия в зоне субдукции

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Максютовский эклогит-глаукофансланцевый комплекс характеризуется сложной складчато-надвиговой структурой, возникшей во время позднедевонской коллизии между погружающейся окраиной Балтики (Восточно-Европейская плита) и Магнитогорской островной дугой. Эклогиты являются наиболее изученными породами комплекса, их образование и эксгумацию, как правило, связывают с коллизионной стадией развития орогена. При этом генезис метаультрамафитов, образующих вместе с эклогитами пластовые и будинированные тела в толще метаосадочных пород (сланцы и кварциты), до сих пор оставался неизвестным. В настоящей работе приводятся результаты первого детального петрологического исследования метаультрамафитов, представленных антигорит-хлоритовым и магнезит-антигоритовым метагарцбургитами, хлорит-антигоритовым метаортопироксенитом. Структурные соотношения между минералами в метагарцбургитах и составы минералов свидетельствуют по крайней мере о двух этапах преобразования пород. Минералы раннего минерального парагенезиса – оливин, акцессорные хромит и низкофтористый Ti-клиногумит – имеют метаморфический генезис, в работе обсуждаются ультравысокобарные (UHP) условия их образования. На втором этапе происходило частичное замещение оливина и формирование ортопироксенсодержащих парагенезисов с Cr-Al антигоритом и/или высокохромистым хлоритом. На основе моделирования фазовых равновесий с помощью программного комплекса Perple_X установлено, что образование антигорит-ортопироксенового парагенезиса было связано с Si-Al метасоматозом при: T ~ 630°С, P ~ 2 ГПа, lgaSiO2 ~ –0.6, lgaAl₂O₃ ~ –2.5. Важно отметить исключительную чувствительность минерального парагенезиса к aSiO₂: даже небольшое снижение lgaSiO₂ относительно приведенного выше значения привело бы к росту оливина с антигоритом, а повышение – к росту ортопироксена. Последнее может объяснить образование метаортопироксенитов, широко представленных среди метаультрамафитов максютовского комплекса. Аналогичные расчеты, выполненные для дипазона ХСО₂ = 0.01–0.05 в H₂O-CO₂ флюиде, показали, что при установленных термодинамических условиях может образовываться только магнезит, замещая силикатные минералы. Карбонатизация и Si-Al метасоматоз являются специфическими чертами высокобарных преобразований метаультрамафитов, не установленными в ассоциирующих с ними эклогитах, кварцитах и сланцах. Подобная избирательность флюидного воздействия на разные типы пород интерпретируется как отражение их разной тектоно-метаморфической эволюции: метаультрамафиты являются фрагментами надсубдукционной мантии, тектонически совмещенными с породами погружающейся плиты (эклогитами и метаосадочными породами).

Полный текст

Доступ закрыт

Об авторах

А. Л. Перчук

Московский государственный университет имени М.В. Ломоносова; Институт экспериментальной минералогии им. академика Д.С. Коржинского РАН

Автор, ответственный за переписку.
Email: alp@geol.msu.ru

геологический факультет, кафедра петрологии и вулканологии

Россия, Москва; Черноголовка, Московская область

Н. Г. Зиновьева

Московский государственный университет имени М.В. Ломоносова

Email: alp@geol.msu.ru

геологический факультет, кафедра петрологии и вулканологии

Россия, Москва

А. В. Сапегина

Московский государственный университет имени М.В. Ломоносова; Институт экспериментальной минералогии им. академика Д.С. Коржинского РАН

Email: alp@geol.msu.ru

геологический факультет, кафедра петрологии и вулканологии

Россия, Москва; Черноголовка, Московская область

П. М. Вализер

Институт геологии и геохимии им. академика Д.С. Заварицкого УрО РАН

Email: alp@geol.msu.ru
Россия, Екатеринбург

В. М. Козловский

Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН

Email: alp@geol.msu.ru
Россия, Москва

В. М. Григорьева

Московский государственный университет имени М.В. Ломоносова

Email: alp@geol.msu.ru

геологический факультет, кафедра петрологии и вулканологии

Россия, Москва

С. Т. Подгорнова

Московский государственный университет имени М.В. Ломоносова

Email: alp@geol.msu.ru

геологический факультет, кафедра петрологии и вулканологии

Россия, Москва

Список литературы

  1. Вализер П.М., Ленных В.И. Амфиболы голубых сланцев Урала. М.: Наука, 1988. 203 с.
  2. Вализер П.М., Краснобаев А.А., Русин А.И. Ультравысокобарическая ассоциация в ультрамафитах максютовского комплекса (Южный Урал) // Докл. АН. 2011. Т. 441. № 4. С. 510–513.
  3. Вализер П.М., Краснобаев А.А., Русин А.И. Жадеит-гроссуляровый эклогит максютовского комплекса (Южный Урал) // Литосфера. 2013а. № 4. С. 50–61.
  4. Вализер П.М., Русин А.И., Краснобаев А.А., Лиханов И.И. Гранат-пироксеновые и лавсонитсодержащие породы максютовского комплекса (Южный Урал) // Геология и геофизика. 2013б. Т. 54. № 11. С. 1754–1772.
  5. Гирнис А.В., Вудланд А.Б., Булатов В.К. и др. Сопряженные реакции окисления–восстановления и карбонатизации–декарбонатизации при взаимодействии перидотитов с карбонатизированными метаосадками и метабазитами: эксперименты в системах без железа при 10 ГПа // Геохимия. 2022. № 67. С. 603–620.
  6. Голионко Б.Г., Рязанцев А.В., Каныгина Н.А. Строение и геодинамическая эволюция максютовского метаморфического комплекса (Южный Урал) по данным структурного анализа и результатам U-Pb датирования зерен обломочного циркона // Геотектоника. 2021. № 6. С. 21–49.
  7. Добрецов Н.Л. Глаукофансланцевые и эклогит-глаукофансланцевые комплексы СССР. Новосибирск: Наука, 1974. 429 с.
  8. Ковалев С.Г., Тимофеева Е.А., Пиндюрина Е.О. Геохимия эклогитов максютовского комплекса (Южный Урал) и генетическая природа их протолитов // Геохимия. 2015. № 4. С. 299–327.
  9. Краснобаев А.А., Вализер П.М., Анфилогов В.Н., Бушарина С.В. Цирконология гранат-глаукофановых сланцев максютовского комплекса (Южный Урал) // Докл. АН. 2015. Т. 461. № 6. С. 696–701.
  10. Краснобаев А.А., Вализер П.М., Анфилогов В.Н. и др. Цирконология рутиловых эклогитов максютовского комплекса (Южный Урал) // Докл. АН. 2017. Т. 477. № 3. С. 342–346.
  11. Ленных В.И. Эклогит-глаукофановый пояс Южного Урала. М.: Наука, 1977. 160 с.
  12. Перчук А.Л., Корепанова О.С. К проблеме рециклинга СО2 в зонах субдукции // Вест. МГУ. Серия Геология. 2011. № 4. С. 30–38.
  13. Перчук А.Л., Шур М.Ю., Япаскурт В.О., Подгорнова С.Т. Экспериментальное моделирование мантийного метасоматоза сопряженного с эклогитизацией корового вещества в зоне субдукции // Петрология. 2013. Т. 21. С. 632–653.
  14. Перчук А.Л., Япаскурт В.О., Зиновьева Н.Г., Шур М.Ю. Экспериментальные свидетельства разнонаправленной миграции натрия, калия и СO2 при взаимодействии глаукофанового сланца с гарцбургитом и вебстеритом в зонах субдукции // Петрология. 2018. Т. 6. С. 612–632.
  15. Пучков В.Н. Палеогеодинамика Южного и Среднего Урала. Уфа: Даурия, 2000. 146 с.
  16. Ревердатто В.В., Селятицкий А.Ю., Карсвелл Д. Геоxимичеcкие pазличия “мантийныx” и “коpовыx” пеpидотитов/пиpокcенитов в метамоpфичеcкиx комплекcаx выcокиx–cвеpxвыcокиx давлений // Геология и геофизика. 2008. № 49 С. 99–119.
  17. Русин А.И., Зворыгина А.А., Вализер П.М. Лавсонитовые эклогиты и метасоматиты Утарбаевской ассоциации максютовского комплекса // Литосфера. 2021. Т. 21. № 6. С. 867–883.
  18. Селятицкий А.Ю., Ревердатто В.В. Термобарические условия эксгумации Тi-клиногумитовых гранатитов кокчетавской субдукционно-коллизионной зоны, Северный Казахстан // Геология и геофизика. 2022. Т. 63. № 8. С. 1051–1074.
  19. Федькин В.В. Четыре эпизода термальной эволюции эклогитов максютовского комплекса (Южный Урал) // Геология и геофизика. 2020. Т. 61. № 5–6. С. 666–684.
  20. Чесноков Б.В., Попов В.А. Увеличение объема зерен кварца в эклогитах Южного Урала // Докл. АН СССР. 1965. Т. 162. № 4. С. 909–910.
  21. Шацкий В.С., Ягоутц Э., Козьменко О.А. Sm-Nd датирование высокобарического метаморфизма максютовского комплекса, Южный Урал // Докл. АН СССР. 1997. Т. 352. № 6. С. 285–288.
  22. Agard P., Yamato P., Jolivet L., Burov E. Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms // Earth-Sci. Rev. 2009. V. 2. P. 53–79. https://doi.org/10.1016/j.earscirev.2008.11.002
  23. Ague J.J., Nicolescu S. Carbon dioxide released from subduction zones by fluidmediated reactions // Nature Geosci. 2014. V. 7. P. 355–360.
  24. Arai S. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation // Chemical Geol. 1994. V. 113. P. 191–204. https://doi.org/10.1016/0009-2541(94)90066-3
  25. Beane R.J., Connelly J.N. Ar/Ar, U/Pb and Gm-Nd constraints on the metamorphic events in the Maksyutov Complex, Southern Ural Mountains // J. Geol. Soc. 2000. V. 157. P. 811–822.
  26. Beane R.J., Liou J.G. Metasomatism in serpentinite mélange rocks from the high-pressure Maksyutov Complex, Southern Ural Mountains, Russia // Int. Geol. 2005. V. 47. P. 24–40.
  27. Beane R.J., Leech M.L. The Maksyutov Complex: The first UHP terrane 40 years later // Еds. М. Cloos, W.D. Carlson, M.C. Gilbert et al. Convergent Margin Terranes and Associated Regions: A Tribute to W.G. Ernst: Geol. Soc. Amer. Spec. Paper. 2007. V. 419. P. 153–169. https://doi.org/10.1130/2006.2419(08)
  28. Bell D.R., Grégoire M., Grove T.L. et al. Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton // Contrib. Mineral. Petrol. 2005. V. 150. P. 251–267.
  29. Berzin R., Oncken O., Knapp J.H. et al. Orogenic evolution of the Ural Mountains: results from an integrated seismic experiment // Science. 1996. V. 274. P. 220–221.
  30. Bostick B.C., Jones R.E., Ernst W.G. et al. Low temperature microdiamond aggregates in the Maksyutov Metamophic Complex, South Ural Mountains, Russia // Amer. Mineral. 2003. V. 88. P. 1709–1717.
  31. Bostock M.G., Hyndman R.D., Rondenay S., Peacock S.M. An inverted continental Moho and serpentinization of the forearc mantle // Nature. 2002. V. 417. P. 536–538.
  32. Brown D., Juhlin C., Alvarez-Marron J. et al. Crustal-scale structure and evolution of an arc-continent collision zone in the southern Urals, Russia // Tectonics. 1998. V. 17. P. 158–171.
  33. Brown D., Spadea P., Puchkov V. et al. Arc-continent collision in the Southern Urals // Earth-Sci. Rev. 2006. V. 79. № 3–4. P. 261–287.
  34. Bulatov V.K., Brey G.P., Girnis A.V. et al. Carbonated sedimentperidotite interaction and melting at 7.5–12 GPa // Lithos. 2014. V. 200–201. Р. 368–385.
  35. Burov E., Jolivet L., Le Pourhiet L., Poliakov A.A. A thermomechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts // Tectonophysics. 2001. V. 342. P. 113–136.
  36. Cannaò E., Scambelluri M., Agostini S. et al. Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: the Voltri Massif case study (Ligurian Western Alps, Italy) // Geochim. Cosmochim. Acta. 2016. V. 190. P. 115–133. https://doi.org/10.1016/j.gca.2016.06.034
  37. Connolly J.A.D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation // Earth Planet. Sci. Lett. 2005. V. 236. P. 524–541. https://doi.org/10.1016/j.epsl.2005.04.033
  38. Colás V., Padrón-Navarta J.A., González-Jiménez J.M. et al. The role of silica in the hydrous metamorphism of chromite // Ore Geol. Rev. 2017. V. 90. P. 274–286. https://doi.org/10.1016/j.oregeorev.2017.02.025
  39. Chemenda A., Matte P., Sokolov V. A model of Palaeozoic obduction and exhumation of high-pressure/low-temperature rocks in the southern Urals // Tectonophysics. 1997. V. 276. P. 217–227.
  40. Cloos M. Flow melanges: Numerical modelling and geologic constraints on their origin in the Fransiscan subduction complex, California // Geol. Soc. Amer. Bull. 1982. V. 93. P. 330–345.
  41. Cloos M., Shreve R.L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins, 1, Background and description // Pure Appl. Geophys. 1988. V. 128. P. 455–500.
  42. Clos F., Gilio M., van Roermund H.L.M. Fragments of deeper parts of the hanging wall mantle preserved as orogenic peridotites in the central belt of the Seve Nappe Complex, Sweden // Lithos. 2014. V. 192. P. 8–20.
  43. Dobretsov N.L., Shatsky V.S., Coleman R.G. et al. Tectonic setting and petrology of ultrahigh-pressure metamorphic rocks in Maksyutov Complex, Ural Mountains, Russia // Int. Geol. Rev. 1996. V. 38. P. 136–160.
  44. Downes H., MacDonald R., Upton B.G.J. et al. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton // J. Petrol. 2004. V. 45. № 8. P. 1631–1662.
  45. Endo S., Mizukami N., Wallis S.R. et al. Orthopyroxene-rich rocks from the Sanbagawa Belt (SW Japan): fluid–rock interaction in the forearc slab–mantle wedge interface // J. Petrol. 2015. V. 56. P. 113–1137.
  46. Evans B.W. Trommsdorff V. Fluorine–hydroxy titanian clinohumite in Alpine recrystallized garnet peridotite: compositional controls and petrologic significance // Amer. J. Sci. 1983. V. 283. P. 355–369.
  47. Fedkin V.V., Burlick T.D., Leech M.L. et al. Petrotectonic origin of mafic eclogites from the Maksyutov subduction Complex, south Ural Mountains, Russia // Geol. Soc. Amer. Spec. Paper 552. 2021. P. 177–193. https//doi.org./10.1130/2021.2552(09)
  48. Franzolin E., Schmidt M.W., Poli S. Ternary Ca–Fe–Mg carbonates: subsolidus phase relations at 3.5 GPa and a thermodynamic solid solution model including order/disorder // Contrib. Mineral. Petrol. 2011. V. 161. P. 213–227.
  49. Frezzotti M.L., Selverstone J., Sharp Z.D., Compagnoni R. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps // Nature Geosci. 2011. V. 4. P. 703–706.
  50. Frost D.J., McCammon C.A. The redox state of Earth’s mantle // Ann. Rev. Earth Planet. Sci. 2008. V. 36. P. 389–420. https://doi.org/10.1146/annurev.earth.36.031207.124322
  51. Gerya T.V., Stöckhert B., Perchuk A.L. Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation // Tectonics. 2002. V. 21. № 6. P. 6–1–6–15.
  52. Gerya T.V., Connolly J.A.D., Yuen D.A. et al. Seismic implications of mantle wedge plumes // Phys. Earth Planet. Int. 2006. V. 156. № 1–2. P. 59–74.
  53. Glodny J., Bingen B., Austrheim H. et al. Precise eclogitization ages deduced from Rb/Sr mineral systematics: the Maksyutov Complex, Southern Urals, Russia // Geochim. Cosmochim. Acta. 2002. V. 66. № 7. P. 1221–1235.
  54. González-Jiménez J.M., Plissart G., Garrido L.N. et al. Ticlinohumite and Ti-chondrodite in antigorite serpentinites from Central Chile: evidence for deep and cold subduction // Europ. J. Mineral. 2017. V. 29. № 6. P. 959–970. https://doi.org/10.1127/ejm/2017/0029-2668
  55. Gorczyk W., Gerya T.V., Connolly J.A.D. et al. Large-scale rigid-body rotation in the mantle wedge and its implications for seismic tomography // Geochem. Geophys. Geosystems. 2006. V. 7. № 5. Q05018. https://doi.org/10.1029/2005GC001075
  56. Guillot S., Hattori K., Agard P. et al. Exhumation processes in oceanic and continental subduction contexts: a review // Eds. S. Lallemand, F. Funiciello. Subduction Zone Geodynamics. Frontiers in Earth Sciences. Berlin, Heidelberg: Springer, 2009. P. 175–209. https://doi.org/10.1007/978-3-540-87974-9_10
  57. Hermann J., Müntener O., Scambelluri M. The importance of serpentinite mylonites for subduction and exhumation of oceanic crust // Tectonophysics. 2000. V. 327. № 3–4. P. 225–238. https://doi.org/10.1016/S0040-1951(00)00171-2
  58. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids //J. Metamorph. Geol. 2011. V. 29. № 3. P. 333–383.
  59. Holland T.J.B., Green E.C.R., Powell R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr // J. Petrol. 2018. V. 59. № 5. P. 881–900.
  60. Jabaloy-Sánchez A., Gómez-Pugnaire M.T., Padrón-Navarta J.A. et al. Subduction- and exhumation-related structures preserved in metaserpentinites and associated metasediments from the Nevado–Filábride Complex (Betic Cordillera, SE Spain) // Tectonophysics. 2015. V. 644–645. P. 40–57. https://doi.org/10.1016/j.tecto.2014.12.022
  61. James B.R. Chromium // Eds. B.A. Stewart, T.A. Howell. Encyclopedia of Water Science. Marcel Dekker Inc. 2003. P. 77–82.
  62. Khedr M.Z., Arai S. Hydrous peridotites with Ti-rich chromian spinel as a low-temperature forearc mantle facies: evidence from the Happo-O’ne metaperidotites (Japan) // Contrib. Mineral. Petrol. 2010. V. 159. P. 137–157.
  63. Klein-Bendavid O., Logvinova A., Schrauder M. et al. High-Mg carbonatitic microinclusions in some Yakutian Diamonds – a new type of diamond-forming fluid // Lithos. 2009. V. 112S. P. 648–659.
  64. Klein-Bendavid O., Pettke T., Kessel R. Chromium mobility in hydrous fluids at upper mantle conditions // Lithos. 2011. V. 125. P. 122–130.
  65. Krebs M., Maresch W.V., Schertl H.P. et al. The dynamics of intra-oceanic subduction zones: a direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation // Lithos. 2008. V. 103. № 1–2. P. 106–137.
  66. Leech M.L., Ernst W.G. Graphite pseudomorphs after diamond? A carbon isotope and spectroscopic study of graphite cuboids from the Maksyutov Complex, south Ural Mountains, Russia // Geochim. Cosmochim. Acta. 1998. V. 62. P. 2143–2154.
  67. Leech M.L., Ernst W.G. Petrotectonic evolution of the high- to ultrahigh-pressure Maksyutov Complex, Karayanovo area, south Ural Mointains: structural and oxygen isotope constraints // Lithos. 2000. V. 52. P. 235–252.
  68. Leech M.L., Stockli D.F. The late exhumation history of the ultrahigh-pressure Maksyutov Complex, south Ural Mountains, from new apatite fission track data // Tectonics. 2000. V. 19. № 1. P. 153–167. https://doi.org/10.1029/1999TC900053
  69. Lennykh V.I., Valizer P.M., Beane R. et al. Evolution of the Maksyutov Complex Ural Mountans, Russia: implication for metamorphism // Int. Geol. Rev. 1995. V. 17. P. 584–600.
  70. Lennykh V.I., Valizer P.M. High-pressure rocks of the Maksyutov Complex (Southern Urals) // Fourth International Eclogite fi eld Symposium. Novosibirsk: OIGGM SB RAS, 1999. 64 p.
  71. Li Z.H., Liu M.Q., Gerya T. Material transportation and fluid-melt activity in the subduction channel: numerical modeling // Sci. China Earth Sci. 2015. V. 58. P. 1251–1268. https://doi.org/10.1007/s11430-015-5123-5
  72. Little T.A., Hacker B.R., Gordon S.M. et al. Diapiric exhumation of Earth’s youngest (UHP) eclogites in the gneiss domes of the D’Entrecasteaux Islands, Papua New Guinea // Tectonophysics. 2011. V. 510. P. 39–68.
  73. Lopez Sanchez-Vizcaino V., Trommsdorff V., Gomez-Pugnaire M.T. et al. Petrology of titanian clinohumite and olivine at the highpressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain) // Contrib. Mineral. Petrol. 2005. V. 149. P. 627–646.
  74. Luth R.W. Mantle volatiles – distribution and consequences // Eds. H.D. Holland, K.K. Turekian. Treatise on Geochemistry. 2003. V. 2. Р. 319–361.
  75. Nozaka T. Metamorphic history of serpentinite mylonites from the Happo ultramafic Complex, Central Japan // J. Metamorph. Geol. 2005. V. 23. P. 711–723. https://doi.org/10.1111/j.1525-1314.2005.00605.x
  76. Okay A.I. Sapphirine and Ti-clinohumite in ultra-high-pressure garnet-pyroxenite and eclogite from Dabie Shan, China // Contrib. Mineral. Petrol. 1994. V. 116. P. 145–155.
  77. O’Reilly S.Y., Griffin W.L. Mantle metasomatism // Eds. D.E. Harlov, H. Austrheim. Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Berlin, Heidelberg: Springer-Verlag, 2013. P. 471–533.
  78. Padrón-Navarta J.A., Sanchez-Vizchaino V.L., Garrido C.J., Gomez-Pugnaire M-T. Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filabride Complex, Southern Spain) // J. Petrol. 2011. V. 52. I. 10. P. 2047–2078.
  79. Padrón-Navarta J.A., Sánchez-Vizcaíno V.L., Hermann J. et al. Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites // Lithos. 2013. V. 178. P. 186–196.
  80. Pellegrino L., Malaspina N., Zanchetta S. et al. High pressure melting of eclogites and metasomatism of garnet peridotites from Monte Duria Area (Central Alps, N Italy): a proxy for melt-rock reaction during subduction // Lithos. 2020. V. 358–359. P. 105391.
  81. Perchuk A.L., Yapaskurt V.O., Griffin W.G. et al. Three types of element fluxes from metabasite into peridotite in analogue experiments: insights into subduction-zone processes // Lithos. 2018а. V. 302–303. Р. 203–223. https://doi.org/10.1016/j.lithos.2018.01.002
  82. Perchuk A.L., Safonov O.G., Smit C.A. et al. Precambrian ultra-hot orogenic factory: making and reworking of continental crust // Tectonophysics. 2018b. V. 746. P. 572–586. https://doi.org/10.1016/j.tecto.2016.11.041.
  83. Plissart G., González-Jiménez J.M., Garrido L.N.F. et al. Tectono-metamorphic evolution of subduction channel serpentinites from South-Central Chile // Lithos. 2019. V. 336. P. 221–241.
  84. Pirard C., Hermann J. Focused fluid transfer through the mantle above subduction zones // Geology. 2015. V. 43. Р. 915–918.
  85. Rapp R.P., Shimizu N., Norman M.D., Applegate G.S. Reaction between slab derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa // Chemical Geol. 1999. V. 160. P. 335–356.
  86. Rebay G., Spalla M.I., Zanoni D. Interaction of deformation and metamorphism during subduction and exhumation of hydrated oceanic mantle: Insights from the Western Alps: deformation-metamorphism of HP serpentinites // J. Metamorph. Geol. 2012. V. 30. № 7. P. 687–702. https://doi.org/10.1111/j.1525-1314.2012.00990.x
  87. Scambelluri M., Pettke T., Rampone E. et al. Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle (Cima di Gagnone, Central Alps, Switzerland) // J. Petrol. 2014. V. 55. P. 459–498.
  88. Scambelluri M., Bebout G.E., Belmonte D. et al. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling // Earth Planet. Sci. Lett. 2016. V. 441. P. 155–166.
  89. Schmid R., Fettes D., Harte B., Davis E. A systematic nomenclature for metamorphic rocks: 1. How to name a metamorphic rock. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Recommendations, web version of 01.02.2007.
  90. Schmidt M.W., Poli S. Devolatilization during subduction // Eds. H.D. Holland, K.K. Turekian. Treatise on Geochemistry. 2014. Р. 669–701.
  91. Shen T., Hermann J., Zhang L. et al. UHP metamorphism documented in Ti-chondrodite- and Ti-clinohumite-bearing serpentinized ultramafic rocks from Chinese Southwestern Tianshan // J. Petrol. 2015. V. 56. P. 1425–1458.
  92. Sobolev A.V., Hofmann A.W., Sobolev S.V., Nikogosian I.K. An olivine-free mantle source of Hawaiian shield basalts // Nature. 2005. V. 434. № 7033. P. 590–597. 10.1038/nature03411' target='_blank'>https://doi.org/doi: 10.1038/nature03411
  93. Spandler C., Pirard C. Element recycling from subducting slabs to arc crust: a review // Lithos. 2013. V. 170–171. Р. 208–223.
  94. Stalder R., Ulmer P. Phase relations of a serpentine composition between 5 and 14 GPa: significance of clinohumite and phase E as water carriers into the transition zone // Contrib. Mineral. Petrol. 2001. V. 140. P. 670–679.
  95. Sun S., McDonough W.F. Chemical and Isotopic Systematics of Oceanics Basalts Implications for Mantle Composition and Processes // Geol. Soc. London. Spec. Publ. 1989. V. 42. P. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  96. Syracuse E.M., van Keken P.E., Abers G.A. The global range of subduction zone thermal models // Phys. Earth Planet. Int. 2010. V. 183. № 1. P. 73–90.
  97. Tomlinson E.L., Holland T.J.B. A thermodynamic model for the subsolidus evolution and melting of peridotite // J. Petrol. 2021. V. 62. № 1. egab012. https://doi.org/10.1093/petrology/egab012
  98. Trommsdorff V., López Sánchez-Vizcaíno V.L., Gómez-Pugnaire M.T., Müntener O. High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain // Contrib. Mineral. Petrol. 1998. V. 132. P. 139–148. https://doi.org/10.1007/s004100050412
  99. Ulmer P., Trommsdorff V. Phase relations of hydrous mantle subducting to 300 km // Eds. Y. Fei, C.M. Bertka, B.O. Mysen. Mantle Petrology: Field Observations and High Pressure Experiments. Geochem. Soc. Spec. Publ. 1999. V. 6. P. 259–281.
  100. Wakabayashi J. Mélanges of the Franciscan Complex, California: Diverse structural setting, evidence for sedimentary mixing, and their connection to subduction processes // Eds. J. Wakabayashi, Y. Dilek. Mélanges: Processes of Formation and Societal Significance. Geol. Soc. Amer. Spec. Paper. 2011. V. 480. P. 117–141.
  101. Wang H., Huismans R.S., Rondenay S. Water migration in the subduction mantle wedge: A two-phase flow approach // J. Geophys. Res.: Solid Earth. 2019. V. 124. P. 9208–9225. https://doi.org/10.1029/2018JB017097
  102. Weiss M. Clinohumites: a field and experimental study. Thesis, ETH Zurich № 12202. 1997. 168 p.
  103. White R.W., Powell R., Holland T.J.B. et al. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems // J. Metamorph. Geol. 2014. V. 32. № 3. P. 261–286.
  104. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // Amer. Mineral. 2010. V. 95. P. 185–187.
  105. Woodland A.B., Bulatov V.K., Brey G.P. et al. Subduction factory in an ampoule: Experiments on sediment–peridotite interaction under temperature gradient conditions // Geochim. Cosmochim. Acta. 2018. V. 223. Р. 319–349.
  106. Wunder B., Schreyer W. Antigorite: high-pressure stability in the system MgO-SiO2-H2O // Lithos. 1997. V. 41. P. 213–227.
  107. Yin Z.-Z., Ren-Xu Chen, Yong-Fei Zheng et al. Serpentinization and deserpentinization of the mantle wedge at a convergent plate margin: evidence of orogenic peridotites from a composite oceanic–continental subduction zone // J. Petrol. 2023. V. 64. I. 3. egad015. https://doi.org/10.1093/petrology/egad015
  108. Zheng Y.F., Chen R.X., Xu Z., Zhang S.B. The transport of water in subduction zones // Sci. China Earth Sci. 2016. V. 59. P. 651–682.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Р-Т условия стабильности антигорита и Ti-клиногумита. (а) Линии реакций разложения антигорита по экспериментальным данным (Wunder, Schreyer, 1997).

Скачать (555KB)
3. Рис. 2. Структурная схема максютовского комплекса (Вализер и др., 2013б; Ковалев и др., 2015 с изменениями). 1 – мезозойские и кайнозойские отложения, 2 – зилаирский флиш (D₃–C₁), 3 – силурийские отложения и вулканиты, 4 – кварцитосланцевые толщи суванякского комплекса, 5 – бластомилониты, 6 – верхняя, офиолитоподобная структурно-вещественная единица (СВЕ #2) максютовского комплекса, 7 – нижняя, супракрустальная структурно-вещественная единица (СВЕ #1) максютовского комплекса, 8 – ультрамафиты Халиловского массива, 9 – амфиболиты, 10 – серпентиниты и серпентинитовый меланж, 11 – диабазовые дайки, 12 – Янтышевско-Юлукский надвиг, 13 – тектонические нарушения. ГУР – Главный Уральский разлом.

Скачать (526KB)
4. Рис. 3. Геологическая схема выхода высокобарных пород в районе дер. Караяново (Lennykh, Valizer, 1999). Изученные образцы отбирались из осыпи под крупным телом, находящимся в северо-западной части обнажения.

Скачать (439KB)
5. Рис. 4. Сканированные шлифы (со скрещенными поляризационными пленками) и их изображения в обратнорассеянных электронах (справа) исследованных пород. (а, б) – Atg-Chl метагарцбургит (обр. МК 3.23). (в, г) – Mgs-Atg метагарцбургит (обр. МК 3.25). (д, е) – Atg-Chl метаортопироксенит с антигоритовой жилой (обр. МК 3.22).

6. Рис. 5. Петрографические и микроструктурные особенности антигорит-хлоритового метагарцбургита (обр. МК 3.23). (а) – включения Ti-клиногумита в зерне оливина, пронизанного многочисленными вторичными иглами антигорита. (б, в) – полиминеральные включения (Ti-Chu + Chr + Ol ± Ilm) в ортопироксене. (г) – зональные идиобласты ортопироксена, окруженные пойкилитовым оливином; мелкие (<5 мкм) белые пятнышки в оливине и ортопироксене – хромит. (д) – сосуществующие порфиробласты ортопироксена и хлорита; оливин содержит редкие иглы вторичного антигорита. (е) – антигорит и магнезит в ортопироксене. Микрофотографии (а) и (б) – оптическое изображение участков шлифа, (в)–(е) – изображения в обратнорассеянных электронах.

7. Рис. 6. Петрографические и микроструктурные особенности магнезит-антигоритового метагарцбургита (обр. МК 3.25). (а) – субидиоморфные кристаллы ортопироксена, сосуществующие с плотной листоватой массой антигорита. (б) – частичное замещение оливина и магнезита антигоритом и равновесные соотношения с ортопироксеном. (в) – ортопироксен, замещающий реликтовый оливин. (г) – жилы магнезита, пронизывающие ортопироксен и антигорит. (д) – замещение ортопироксена магнезитом, имеющее вид срастания; на врезке – более развитая стадия этого замещения. (е) – жила магнезита в оливине; иглы антигорита пронизывают жилу и вмещающий оливин. (а) и (б) – изображения в обратнорассеянных электронах, (в)–(е) – оптическое изображение, николи скрещены.

8. Рис. 7. Параметры состава оливина в крупных зернах и во включениях в ортопироксене из обр. MK 3.23 и МК 3.25. (а) Диаграмма XMg–NiO (мас. %), (б) диаграмма XMg–MnO (мас. %). Фрагменты полей составов оливина из перидотитов мантии (лиловое), абиссальных перидотитов (сиреневое), базальтов СОХ (MORB, бежевое) и базальтов океанических островов (OIB, точечная пограничная линия, бесцветное) (Sobolev et al., 2005).

Скачать (440KB)
9. Рис. 8. Параметры состава ортопироксена из метаультрамафитов (обр. MK 3.23, МК 3.25, МК 3.22ж). (а) Диаграмма XMg–Al₂O₃ (мас. %), (б) диаграмма XMg–Cr₂O₃ (мас. %). Обр. МК 3.22ж –ортопироксен из антигоритовой жилы.

Скачать (466KB)
10. Рис. 9. Корреляции параметров состава антигорита (форм. ед., пересчет на 116 атомов кислорода) из метаультрамафитов (обр. MK 3.23, МК 3.25, МК 3.22) на диаграммах Si–Al (а) и Сr–Al (б). ж – серпентинитовая жила, рз – реакционная зона между жилой и породой.

Скачать (398KB)
11. Рис. 10. Параметры состава Ti-клиногумита в метагарцбургитах (обр. MK 3.23, МК 3.25). (а) XMg–F (форм. ед.), (б) F (форм. ед.)–Ti (форм. ед.), (в) Ti (форм. ед.)–(Fe+Mg+Ni+Mn) (форм. ед.). Линия тренда – теоретический вектор состава клиногумитов TiO₂Mg₋₁OH₋₁, предложенный (Evans, Trommsdorff, 1983). Литературные данные по Ti-клиногумитам из массивов Альмериз (Almeriz), Испания (Lopez Sanchez-Visciano et al., 2005), Чилийских прибрежных Кордильер (González-Jiménez et al., 2017) показаны для сравнения.

Скачать (438KB)
12. Рис. 11. Состав хромита на диаграммах. (а) – тройная диаграмма Cr–Fe³⁺–Al (форм. ед.). Желтым цветом показано поле составов хромита из мантийных хромититов (Khedr, Arai, 2010), оранжевым – из UHP метаультрамафитов (Shen et al., 2015). (б) – диаграмма XMg–Cr/(Cr+Al) (форм. ед.). Цветом показаны поля составов преддуговых и абиссальных перидотитов (Plissart et al., 2019); (в) – соотношение составов шпинели (Cr/(Cr+Al) (форм. ед.)) и оливина. Границы полей кумулусных перидотитов, а также Ol-Spl мантийных парагенезисов, согласно (Arai, 1994). Цветом выделены поля кратонных и абиссальных перидотитов по (Clos et al., 2014).

Скачать (349KB)
13. Рис. 12. Содержания главных и рассеянных элементов, нормализованные на состав примитивной мантии (ПМ) (Sun, McDonough, 1989), в образцах метаультрамафитов МК 3.22, МК 3.25: (а) – спектр редкоземельных элементов, (б) – расширенный спектр рассеянных элементов. Обр. МК 3.22ж – антигоритовая жила.

Скачать (376KB)
14. Рис. 13. Результаты термодинамического моделирования Si-Al метасоматоза оливина (MgO = 48.80, FeO = 10.03, SiO₂ = 41.17 мас. %) при избытке водного флюида с помощью Perple_X. (а) aSiO₂–aAl₂O₂ диаграммы при фиксированных Р-Т условиях; значения активности выражены в десятичных логарифмах. Цветом выделены поля с Atg-Opx парагенезисом. Р-Т условия моделирования и стабильности Opx-Atg парагенезиса. (б) Стабильность Opx-Atg парагенезиса на Р–Т диаграмме на основе aSiO₂–aAl₂O₂ диаграмм, представленных на рис. 13а. Незалитые квадраты – P-T условия для расчетов, представленных на рис. 13а, синие квадраты – термодинамические условия, при которых появляется Opx-Atg парагенезис, розовые квадраты – термодинамические условия, при которых появляется Opx-Atg парагенезис и составы природных минералов. (в) Референтная aSiO₂–aAl₂O₂ диаграмма при 625°С и 2.0 ГПа; значения активностей выражены в десятичных логарифмах. Цветом выделены поля с Opx-Atg парагенезисом. Цветные линии – изоплеты XMg Opx, XMg Atg, Al (форм. ед) в Аtg. Детали см. в тексте.

Скачать (595KB)
15. Рис. 14. Расчетные фазовые диаграммы для метагарцбургитов, построенные для валовых химических составов пород с помощью Perple_X. (а) – Atg-Chl метагарцбургит, (б) – Mgs-Atg метагарцбургит. Цветные линии – изоплеты XMg Opx, XMg Ol, XMg Atg, Al (форм. ед.) в Аtg. Детали см. в тексте.

Скачать (245KB)
16. Рис. 15. Фазовые диаграммы aSiO₂–aAl₂O₂ при фиксированных Р-Т условиях, показывающие влияние ХСО₂ во флюиде на карбонатизацию антигоритового метагарцбургита; значения активностей выражены в десятичных логарифмах. Расчеты выполнялись для состава оливина (MgO = 48.80, FeO = 10.03, SiO₂ = 41.17 мас.%) из Mgs-Atg метагарцбургита при фиксированных Р-Т-ХСО₂ условиях, см. на диаграммы. Звездочка – условия главной метасоматической стадии. Детали см. в тексте.

Скачать (308KB)
17. Рис. 16. Р-Т условия образования метагарцбургитов максютовского комплекса. Сплошные линии: Atg = Ol + Opx + H₂O (Wunder, Schreyer, 1997), Ol + Tlc + H₂O (Wunder, Schreyer, 1997), Ti-Chu = Ol + Ilm + H₂O (Lopez Sanchez-Vizcaino et al., 2005), Fo + H₂O = Atg + Br (рассчитано с помощью Perple_X). Точечные линии: геотермы холодной и горячей субдукции (Syracuse et al., 2010). Этапы метаморфизма коровых пород максютовского комплекса: синий сплошной контур (Lennykh et al., 1995); розовый (Bostick et al., 2003); пунктирные контуры – предполагаемые этапы в соответствующих статьях.

Скачать (454KB)

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах