INVESTIGATION OF THE DEGREE DEFORMATION INFLUENCE DURING TENSILE TESTS ON THE TEXTURE, PHASE COMPOSITION AND RESIDUAL STRESSES IN THE α- AND ɣ-PHASES OF STEEL VNS9-SH

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

X-ray diffraction methods were used to study the influence of the degree of deformation during tensile testing on the phase composition, texture and stress state of the α- and ɣ-phases of the VNS9-SH alloy. It is shown that during testing to failure, the amount of the α-phase increases on the surface from 75 to 91% and from 45-50 to ~70% in the subsurface layers. To assess the susceptibility of two-phase steels to the trip effect, a parameter of austenite metastability is proposed in the form of the relative fraction of decomposed austenite at individual stages of tensile deformation. It has been established that in the initial steel strip 0.3 mm thick, as a result of the positive volumetric effect of the transformation ɣ => α, compressive stresses are formed in austenite, reaching a value of –1000 MPa on the surface, in contrast to tensile stresses in martensite. Their presence is associated with heating of the metal, the cooling of which leads to tensile stresses in martensite due to its significantly lower temperature coefficient of linear expansion value compared to austenite.

Sobre autores

I. Bannykh

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Email: eliz@imet.ac.ru

A. Ashmarin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Email: eliz@imet.ac.ru

S. Betsofen

Moscow Aviation Institute (National Research University) MAI, Moscow, Russia

Email: s.betsofen@gmail.com

E. Lukin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Email: eliz@imet.ac.ru

G. Seval'nev

Federal State Unitary Enterprise «All-Russian Scientific-Research Institute of Aviation Materials» of National Research Center «Kurchatov Institute», Moscow, Russia

Email: eliz@imet.ac.ru

E. Blinov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Email: eliz@imet.ac.ru

A. Aleksandrov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Autor responsável pela correspondência
Email: eliz@imet.ac.ru

Bibliografia

  1. Бецофен, С.Я. Фазовый состав и остаточные напряжения в поверхностных слоях трип-стали ВНС9-Ш / С.Я. Бецофен, А.А. Ашмарин, В.Ф. Терентьев, И.А. Грушин, М.А. Лебедев // Деформация и разрушение материалов. 2020. №6. С.12-20.
  2. Банных, И.О. Влияние легирования на величину объемного эффекта g®a превращения в высокоазотистых сталях / И.О. Банных, С.Я. Бецофен, И.А. Грушин, О.П. Черногорова // Деформация и разрушение материалов. 2020. №4. C.8-15.
  3. Ашмарин, А.А. Остаточные напряжения в поверхностных слоях с градиентной структурой / А.А. Ашмарин, С.Я. Бецофен, А.А. Лозован, М.А. Лебедев // Деформация и разрушение материалов. 2022. №2. С.18-26.
  4. Бецофен, С.Я. Формирование остаточных напряжений в сталях и титановых сплавах при ионном азотировании / С.Я. Бецофен, И.О. Банных, С.М. Сарычев // Металлы. 2006. №5. C.23-28.
  5. Бецофен, С.Я. Исследование влияния текстуры и гетерогенности состава на измерение остаточных напряжений в ионно-плазменных покрытиях / С.Я. Бецофен, Л.М. Петров, А.А. Ильин, И.О. Банных, А.Н. Луценко // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2004. №1. C.39-45.
  6. Hou, Peijun. Lean duplex TRIP steel: Role of ferrite in the texture development, plastic anisotropy, martensitic transformation kinetics, and stress partitioning / Peijun Hou, Yuan Li, Dongchul Chae, Yang Ren, Ke An, Hahn Choo // Materialia. 2021. V.15. Art.100952.
  7. Ma, Dan-Dan. Influences of initial microstructures on martensitic transformation and textures during cold rolling and tensile mechanical properties in high manganese TRIP steel / Dan-Dan Ma, Ping Yang, Xin-Fu Gu, Feng-E Cui // Mater. Sci. Eng. A. 2022. V.829. Art.142147.
  8. Бецофен, С.Я. Влияние отпуска на фазовый состав и текстуру a- и g-фаз трип-стали ВНС9-Ш / С.Я. Бецофен, А.А. Ашмарин, В.Ф. Терентьев, И.А. Грушин, М.И. Гордеева, М.А. Лебедев // Деформация и разрушение материалов. 2021. №5. C.22-28.
  9. Bleck, W. Textures in steel sheets / W. Bleck, R. Grossterlinden, U. Lotter, C.-P. Relp // Mater. Technol. 1991. №12. P.580-586.
  10. Бецофен, С.Я. Текстура и анизотропия пластического течения низкоуглеродистых сталей для глубокой вытяжки / С.Я. Бецофен, В.И. Славов, В.Н. Мацнев, О.С. Костыкова // Металлы. 2004. №5. C.93-98.
  11. Petrov, R. Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique / R. Petrov, L. Kestens, A. Wasilkowska, Y. Houbaert // Mater. Sci. Eng. A. 2007. V.447. P.285-297.
  12. Cai, Z.H. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content / Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying // Acta Materialia. 2015. V.84. P.229-236.
  13. Tsuchida, N. Room-temperature creep tests under constant load on a TRIP-aided multimicrostructure steel / N. Tsuchida, N. Nagahisa, S. Harjoc // Mater. Sci. Eng. A. 2017. V.700. P.631-636.
  14. Chen, S.-C. Microstructure and mechanical behaviors of GPa-grade TRIP steels enabled by hot-rolling processes / S.-C Chen, Y.-T. Wang, Y.-C. Lin, C.-Y. Huang, J.-R. Yang, H.-W. Yen // Mater. Sci. Eng. A. 2019. V.761. Art.138005.
  15. Kanga, J. Design of a low density Fe-Mn-Al-C steel with high strength-high ductility combination involving TRIP effect and dynamic carbon partitioning /j. Kanga, Y.J. Li, X.H. Wang, H.S. Wang, G. Yuan, R.D.K. Mishra, G.D. Wang // Mater. Sci. Eng. A. 2019. V.742. P.464-477.
  16. Ennis, B.L. Metastable austenite driven work-hardening behaviour in a TRIP-assisted dual phase steel / B.L. Ennis, E. Jimenez-Melero, E.H. Atzema, M. Krugla, M.A. Azeem, D. Rowley, D. Daisenberger, D.N. Hanlon, P.D. Lee // Intern. J. Plasticity. 2017. V.88. P.126-139.
  17. Van Dijk, N.H. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling / N.H. Van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. Van der Zwaag // Acta Materialia. 2005. V.53. P.5439-5447.
  18. Song, C. Stress partitioning among ferrite, martensite and retained austenite of a TRIP-assisted multiphase steel: An in situ high-energy X-ray diffraction study / C. Song, H. Yua, J. Lu, T. Zhoua, S. Yang // Mater. Sci. Eng. A. 2018. V.726. P.1-9.
  19. Allain, S.Y.P. In-situ investigation of quenching and partitioning by high energy X-ray diffraction experiments / S.Y.P. Allain, G. Geandier, J.C. Hel, M. Soler, F., Danoix, M. Gounй // Scripta Materialia. 2017. V.131. P.15-18.
  20. Tomota, Y. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction / Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, Y. Morii // Acta Materialia. 2004. V.52. P.5737-5745.
  21. Xu, P.G. Evaluation of austenite volume fraction in TRIP steel sheets using neutron diffraction / P.G. Xu, Y. Tomota, Y. Arakaki, S. Harjo, H. Sueyoshi // Mater. Characterization. 2017. V.127. P.104-110.
  22. Ашмарин, А.А. Особенности определения количественного фазового состава в трип-сталях / А.А. Ашмарин, C.Я. Бецофен, Е.И. Лукин, М.И. Гордеева // Деформация и разрушение материалов. 2022. №12. С.17-22.
  23. Zheng, Jing. Modeling and simulation of weld residual stresses and ultrasonic impact treatment of welded joints / Jing Zheng, Ayhan Ince, Lanqing Tang // Procedia Engineering. 2018. V.213. P.36-47.
  24. Chen, Lin. Numerical and experimental investigation on microstructure and residual stress of multi-pass hybrid laser-arc welded 316L steel / Lin Chen, Gaoyang Mi, Xiong Zhang, Chunming Wang // Mater. Design. 2019. V.168. Art.107653.
  25. Park, Jeong-Ung. The effect of initial stress induced during the steel manufacturing process on the welding residual stress in multi-pass butt welding / Jeong-Ung Park, Gyubaek An, Wanchuck Woo // Intern. J. Naval Architecture and Ocean Eng. 2018. V.10. P.129-140.
  26. Javadi, Y. Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91 / Y. Javadi, M.C. Smith, K. Abburi [et. al.] // Intern. J. Pressure Vessels and Piping. 2017. V.154. P.41-57.
  27. Martinson, P. Residual stress analysis of laser spot welding of steel sheets / P. Martinson, S. Daneshpour, M. Koзak, S. Riekehr, P. Staron // Mater. Design. 2009. V.30(9). P.3351-3359.
  28. Hwang, Byoungchul. Correlation of austenite stability and ductile-to-brittle transition behavior of high-nitrogen 18Cr-10Mn austenitic steels / Byoungchul Hwang, Tae-Ho Lee, Seong-Jun Park, Chang-Seok Oh, Sung-Joon Kim // Mater. Sci. Eng. A. 2011. V.528. P.7257-7266.
  29. Ашмарин, А.А. Исследование влияния отжига на фазовый состав и термические коэффициенты линейного расширения трип-стали ВНС9-Ш / А.А. Ашмарин, C.Я. Бецофен, Е.И. Лукин // Металлы. 2022. №6. С.66-72.
  30. A.A. Ashmarin, S.Ya. Betsofen, E.I. Lukin. "Effect of annealing on the phase composition and the linear thermal expansion coefficient of VNS9-Sh TRIP steel". 2022. №11. P.1397-1402.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies