ELEKTRONNO-MIKROSKOPIChESKIY ANALIZ STRUKTURNO-FAZOVYKh SOSTOYaNIY I DISLOKATsIONNOY SUBSTRUKTURY TYaZhELONAGRUZhENNYKh ZAEVTEKTOIDNYKh REL'SOV

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

С использованием метода просвечивающей дифракционной электронной микроскопии выполнен количественный анализ эволюции фазового состава и тонкой структуры по радиусу скругления выкружки головки рельса из заэвтектоидной стали Э90ХАФ после эксплуатации на Забайкальской железной дороге. Исследования выполнены на расстояниях 0 (верхний слой контактной поверхности колесо—рельс), 2 и 10 мм. Проведен анализ тонкой структуры, размеров и плотности распределения карбидных частиц, скалярной и избыточной плотности дислокаций, кривизны кручения кристаллической решетки, амплитуды внутренних напряжений. Определены источники внутренних напряжений и выявлены места зарождения микротрещин.

References

  1. Yuriev, A.A. Structure and properties of lengthy rails after extreme long-term operation / A.A. Yuriev, V.E. Gromov, Yu.F. Ivanov [et al.] // Millersville : Mater. Res. Soc. 2021. V.106. P.187. DOI : 10.21741/9781644901472.
  2. Hu, Y. Microstructure evolution of railway pearlitic wheel steels under rolling-sliding contact loading / Y. Hu, L. Zhou, H.H. Ding [et al.] // Tribology Intern. 2021. V.154. Art.106685. DOI : 10.1016/j.triboint.2020.106685.
  3. Li, X.C. Investigation on the relationship between microstructure and wear characteristic of rail materials / X.C. Li, H.H. Ding, W.J. Wang [et al.] // Tribology Intern. 2021. V.163. Art.107152. DOI : 10.1016/j.triboint.2021.107152.
  4. Zhou, L. Comparison of the damage and microstructure evolution of eutectoid and hypereutectoid rail steels under a rolling-sliding contact / L. Zhou, W. Bai, Z. Han [et al.] // Wear. 2022. V.492—493. Art.204233. DOI : 10.1016/j.wear.2021.204233.
  5. Miranda, R.S. Fatigue and wear behavior of pearlitic and bainitic microstructures with the same chemical composition and hardness using twin-disc tests / R.S. Miranda, A.B. Rezende, S.T. Fonseca [et al.] // Wear. 2022. V.494—495. Art.204253. DOI : 10.1016/j.wear.2022.204253.
  6. Pereira, H.B. Influence of the microstructure on the rolling contact fatigue of rail steel : Spheroidized pearlite and fully pearlitic microstructure analysis / H.B. Pereira, L.H.D. Alves, A.B. Rezende [et al.] // Wear. 2022. V.498—499. Art.204299. DOI : 10.1016/j.wear.2022.204299.
  7. Pan, R. Investigation into the microstructure evolution and damage on rail at curved tracks / R. Pan, Yu. Chen, H. Lan [et al.] // Wear. 2022. V.504—505. Art.204420. DOI : 10.1016/j.wear.2022.204420.
  8. Zhang, S.-Y. Study on wear and rolling contact fatigue behaviours of defective rail under different slip ratio and contact stress conditions / S.-Y. Zhang, M. Spiryagin, Q. Lin [et al.] // Tribology Intern. 2022. V.169. Art.107491.
  9. Al-Juboori, A. Microstructural investigation on a rail fracture failure associated with squat defects / A. Al-Juboori, H. Zhu, H. Li [et al.] // Eng. Failure Analysis // 2023. V.151. Art.107411. DOI : 10.1016/j.engfailanal.2023.107411.
  10. Громов, В.Е. Деформационное преобразование структуры и фазового состава поверхности рельсов при сверхдлительной эксплуатации / В.Е. Громов, Ю.Ф. Иванов, Р.В. Кузнецов [и др.] // Деформация и разрушение материалов. 2022. №1. С.35—39.
  11. Иванов, Ю.Ф. Структура рельсов после экстремально длительной эксплуатации / Ю.Ф. Иванов, В.Е. Громов, Р.В. Кузнецов [и др.] // Изв. вузов. Физика. 2022. Т.65. №3. С.160—165. DOI : 10.17223/00213411/65/3/160.
  12. Hu, Y. Investigation on wear and rolling contact fatigue of wheel-rail materials under various wheel/rail hardness ratio and creepage conditions / Y. Hu, L. Zhou, H.H. Ding [et al.] // Tribology Intern. 2023. V.143. Art.106091. DOI : 10.1016/j.triboint.2019.106091.
  13. Wen, J. Comparison of microstructure changes induced in two pearlitic rail steels subjected to a fullscale wheel/rail contact rig test / J. Wen, J. Marteau, S. Bouvier [et al.] // Wear. 2020. V.456—457. Art.203354. DOI : 10.1016/j.wear.2020.203354.
  14. Ma, L. Fatigue crack growth and damage characteristics of high-speed rail at low ambient temperature / L. Ma, J. Guo, Q.Y. Liu [et al.] // Eng. Failure Analysis. 2017. V.82. P.802—815. DOI : 10.1016/j.engfailanal.2017.07.026.
  15. Masoumi, M. Role of microstructure and crystallographic orientation in fatigue crack failure analysis of a heavy haul railway rail / M. Masoumi, A. Sinatora, H.G. Sietsma // Eng. Failure Analysis. 2019. V.96. P.320—329. DOI : 10.1016/j.engfailanal.2018.10.022.
  16. Turan, M.E. Residual stress measurement by strain gauge and X-ray diffraction method in different shaped rails / M.E. Turan, F. Aydin, Y. Sun, M. Cetin // Eng. Failure Analysis. 2019. V.96. P.525—529. DOI : 10.1016/j.engfailanal.2018.10.016.
  17. Shi, X.-J. Wear behavior of high-speed wheel and rail steels under various hardness matching / X.-J. Shi, X.-X. Zhang, G.-J. Diao, Q.-Z. Yan // J. Mater. Eng. Perform. 2023. V.32. P.366—380. DOI : 10.1007/s11665-022-07062-2.
  18. Mishra, K. Effect of interlamellar spacing on fracture toughness of nanostructured pearlite / K. Mishra, A. Singh // Mater. Sci. Eng. A. 2017. V.706. P.22—26. DOI : 10.1016/j.msea.2017.08.115.
  19. Zhu, Y. Study on wear and RCF performance of repaired damage railway wheels: Assessing laser cladding to repair local defects on wheels / Y. Zhu, Y. Yang, X. Mu [et al.] // Wear. 2019. V.430—431. P.126—136. DOI : 10.1016/j.wear.2019.04.028.
  20. Hu, Y. Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions / Y. Hu, L.C. Guo, M. Maiorino [et al.] // Wear. 2020. V.460—461. Art.203455. DOI : 10.1016/j.wear.2020.203455.
  21. He, C.G. On the microstructure evolution and nanocrystalline formation of pearlitic wheel material in a rolling-sliding contact / C.G. He, H.H. Ding, L.B. Shi [et al.] // Mater. Characterization. 2020. V.164. Art.110333. DOI : 10.1016/j.matchar.2020.110333.
  22. Bai, W. Damage behavior of heavy-haul rail steels used from the mild conditions to harsh conditions / W. Bai, L. Zhou, P. Wang [et al.] // Wear. 2022. V.496—497. Art.204290. DOI : 10.1016/j.wear.2022.204290.
  23. Fultz, B. Transmission electron microscopy and diffractometry of materials / B. Fultz, J. Howe; 4-th ed. — Berlin : Springer, 2013. 764 p.
  24. Thomas, J. Analytical transmission Electron Microscopy / J. Thomas, T. Gemming. — Dordrecht : Springer Netherlands, 2014. 348 p.
  25. Egerton, F.R. Physical principles of electron microscopy / F.R. Egerton. — Basel : Springer Intern. Publ., 2016. 196 p.
  26. Kumar, C.S.S.R. Transmission electron microscopy. Characterization of nanomaterials / C.S.S.R. Kumar. — N.Y. : Springer, 2014. 717 p.
  27. Carter, C.B. Transmission electron microscopy / C.B. Carter, D.B. Williams. — Berlin : Springer Intern. Publ., 2016. 518 p.
  28. Порфирьев, М.А. Тонкая структура длинномерных рельсов из заэвтектоидной стали после длительной эксплуатации / М.А. Порфирьев, В.Е. Громов, Ю.Ф. Иванов [и др.]. — Новокузнецк : Полиграфист, 2023. 285 с.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies