Issledovanie prochnosti, relaksatsionnoy i korrozionnoy stoykosti ul'tramelkozernistoy austenitnoy stali 08Kh18N10T, poluchennoy metodom RKU-pressovaniya. II. issledovanie relaksatsionnykh svoystv i stoykosti protiv mezhkristallitnoy korrozii

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Relaxation resistance and corrosion resistance of samples of ultrafine-grained steel 08H18N10T obtained by the method of equal-channel angular pressing at temperatures of 150 and 450 °C are investigated. For ultrafine-grained steel with high values of the limit of macroelasticity and yield strength, a decrease in the Hall—Petch coefficient due to fragmentation of δ-ferrite particles at the method of equal-channel angular pressing is shown. It is established that the samples of ultrafine-grained steel have 2-3 times higher relaxation resistance compared to coarse-grained steel. It is noted that the method of equal-channel angular pressing leads to an increase in the rate of general corrosion. At the same time, despite the decrease in corrosion resistance, samples of ultrafine-grained steels have high resistance to intercrystalline corrosion. It is established that the decrease in corrosion resistance of ultrafine-grained steel is due to an increase in the volume fraction of martensite deformation at the method of equal-channel angular pressing.

作者简介

V. Kopylov

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

V. Chuvil'deev

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

A. Nokhrin

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

N. Kozlova

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

M. Chegurov

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

N. Melekhin

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

编辑信件的主要联系方式.
Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

参考

  1. Сагарадзе, В.В. Коррозионное растрескивание аустенитных и ферритоперлитных сталей / В.В. Сагарадзе, Ю.И. Филиппов, М.Ф. Матвиенко [и др.]. - Екатеринбург: Изд. УрО РАН, 2004. 228 с.
  2. Сагарадзе, В.В. Упрочнение и свойства аустенитных сталей / В.В. Сагарадзе, А.И. Уваров. - Екатеринбург: Изд. ИФМ им. М.Н. Михеева РАН, 2013. 720 с.
  3. Lo, K.H. Recent developments in stainless steels / Lo K.H., Shek C.H., Lai J.K.L. // Mater. Sci. Eng. R. 2009. V.65. Is.4-6. P.39-104.
  4. Jeong, S.W.Comparative study of hardening mechanisms during aging of a 304 stainless steel containing a¢-martensite / Jeong S.W., Kang U.G., Choi J.Y., Nam W.J. //j. Mater. Eng. Performance. 2012. V.21. Is.9. P.1937-1942.
  5. Zergani, A. Evolutions of mechanical properties of AISI 304L stainless steel under shear loading / A. Zergani, H. Mirzadeh, R. Mahmudi // Mater. Sci. Eng. A. 2020. V.791. Art.139667.
  6. Mola, J. Dynamic strain aging mechanisms in a metastable austenitic stainless steel / Mola J., Luan G., Huang Q. [et al.] // Acta Materialia. 2021. V.212. Art.116888.
  7. Hsieh, C.-C. Dispersion strengthening behavior of s phase in 304 modified stainless steels during 1073 K hot rolling / Hsieh C.-C., Lin D.-Y., Wu W.// Metals Mater.Intern. 2007. V.13. Is.5. P.359-363.
  8. Hsieh, C.-C. Precipitation behavior of s phase in 19Cr-9Ni-2Mn and 18Cr-0,75Si stainless steels hot-rolled at 800 °C with various reduction ratios / Hsieh C.-C., Lin D.-Y., Wu W. // Mater. Sci. Eng. A. 2007. V.467. Is.1-2. P.181-189.
  9. Zhou, Q. An insight into oversaturated deformation-induced sigma precipitation in Super304H austenitic stainless steel / Zhou Q., Liu J., Gao Y. // Mater. Design. 2019. V.181. Art.108056.
  10. Bai, G.Intergranular corrosion behavior associated with delta-ferrite transformation of Ti-modified Super304H austenitic stainless steel / Bai G., Lu S., Li Y. // Corrosion Sci. 2015. V.90. P.347-358.
  11. Arganis-Jua¢rez, C.R. Sensitization of an austenitic stainless steel due to the occurrence of d-ferrite / C.R. Arganis-Jua¢rez, A. Va¢zquez, N.F. Garza-Montes-de-Oca, R. Cola¢s // Corrosion Rev. 2019. V.37. Is.2. P.179-186.
  12. Shi, H. Hot salt corrosion of additively manufactured stainless steel 316L and Inconel 718 in MgCl2/KCl/NaCl chloride salt at 700 °C / Shi H., Wu T., Gong Q. [et al.] // Corrosion Sci. 2022. V.207. Art.110561.
  13. Wang, J. Effect of d-ferrite on the stress corrosion cracking behavior of 321 stainless steel / Wang J., Su H., Chen K. [et al.] // Corrosion Sci. 2019. V.158. Art.108079.
  14. Wang, Q. Role of d-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel / Wang Q., Chen S., Lu X. [et al.] //j. Mater. Sci. Technol. 2022. V.114. P.7-15.
  15. Warren, A.D. The role of ferrite in type 316H austenitic stainless steels on the susceptibility to creep cavitation / A.D. Warren, I.J. Griffiths, R.L. Harniman [et al.] // Mater. Sci. Eng. A. 2015. V.635. P.59-69.
  16. J‡rvenp‡‡, A. Processing and properties of reversion-treated austenitic stainless steels / A. J‡rvenp‡‡, M. Jaskari, A. Kisko, P. Karjalainen // Metals. 2020. V.10. Is.2. P.281.
  17. Tikhonova, M. Microstructure and mechanical properties of austenitic stainless steels after dynamic and post-dynamic recrystallization treatment / M. Tikhonova, R. Kaibyshev, A. Belyakov // Advanced Eng. Mater. 2018. V.20. Is.7. Art.1700960.
  18. Panov, D.O. Excellent strength-toughness synergy in metastable austenitic stainless steel due to gradient structure formation / D.O. Panov, R.S. Chernichenko, S.V. Naumov [et al.] // Mater. Letters. 2021. V.303. Art.130585.
  19. Panov, D. Mechanisms on the reverse martensite-to-austenite transformation in metastable austenitic stainless steel / D. Panov, E. Kudryavtsev, R. Chernichenko [et al.] // Metals. 2021. V.11. Is.4. P.599.
  20. Sohrabi, M.J. Deformation-induced martensite in austenitic stainless steels: A review / M.J. Sohrabi, M. Naghizadeh, H. Mirzadeh // Archives of Civil and Mechanical Eng. 2020. V.20. Is.3. P.124.
  21. Shen, Y.F. Twinning and martensite in a 304 austenitic stainless steel / Y.F. Shen, X.X. Li, X. Sun [et al.] // Mater. Sci. Eng. A. 2012. V.552. P.514-522.
  22. Talonen, J. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels /j. Talonen, H. H‡nninen // Acta Materialia. 2007. V.55. Is.18. P.6108-6118.
  23. Gupta, R.K. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review / R.K. Gupta, N. Birbilis // Corrosion Sci. 2015. V.92. P.1-15.
  24. Shit, G. The effect of severe plastic deformation on the corrosion resistance of AISI type 304L stainless steel / G. Shit, S. Ningshen //j. Mater. Eng. Perform. 2020. V.29. Is.9. P.5696-5709.
  25. He, Q. Gradient microstructure design in stainless steel: A strategy for uniting strength-ductility synergy and corrosion resistance / He Q., Wei W., Wang M.-S. [et al.] // Nanomaterials. 2021. V.11. Is.9. Art.2356.
  26. Chen, X. Emergence of micro-galvanic corrosion in plastically deformed austenitic stainless steels / Chen X., Gussev M., Balonis M. [et al.] // Mater. Design. 2021. V.203. Art.109614.
  27. Yanushkevich, Z. Hall-Petch relationship for austenitic stainless steels processed by large strain warm rolling / Z. Yanushkevich, S.V. Dobatkin, A. Belyakov, R. Kaibyshev // Acta Materialia. 2017. V.136. P.39-48.
  28. Du, C. A 2.9 GPa strength nano-gradient and nano-precipitated 304L-type austenitic stainless steel / Du C., Liu G., Sun B. [et al.] // Materials. 2020. V.13. Is.23. Art.5382.
  29. Misra, R.D.K. Microstructure and deformation behavior of phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel / R.D.K. Misra, S. Nayak, S.A. Mali [et al.] // Met. Mater. Trans. A. 2009. V.40. P.2498-2509.
  30. Amininejad, A. Improvement of strength-ductility balance of SAE 304 stainless steel by asymmetric cross rolling / A. Amininejad, R. Jamaati, S.J. Hosseinipour // Mater. Chem. Phys. 2020. V.256. Art.123668.
  31. Li, J. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure / Li J., Cao Y., Gao B. [et al.] //j. Mater. Sci. 2018. V.53. Is.14. P.10442-10456.
  32. Shirdel, M. Enhanced mechanical properties of microalloyed austenitic stainless steel produced by martensite treatment / M. Shirdel, H. Mirzadeh, M.H. Parsa // Advanced Eng. Mater. 2015. V.17. Is.8. P.1226-1233.
  33. Misra, R.D.K. Relationship of grain size and deformation mechanism to the fracture behavior in high strength - high ductility nanostructured austenitic stainless steel / R.D.K. Misra, X.L. Wan, V.S.A. Challa [et al.] // Mater. Sci. Eng. A. 2015. V.626. P.41-50.
  34. Rybal'chenko, O.V. Strength of ultrafine-grained corrosion-resistance steels after severe plastic deformation / O.V. Rybal'chenko, S.V. Dobatkin, L.M. Kaputkina [et al.] // Mater. Sci. Eng. A. 2004. V.387-389. Is.1-2. P.244-248.
  35. Добаткин, С.В. Формирование субмикрокристаллической структуры в аустенитной стали 08Х18Н10Т при РКУ прессовании и нагреве / С.В. Добаткин, О.В. Рыбальченко, Г.И. Рааб // Металлы. 2006. №1. С.48-54.
  36. Dobatkin, S.V. Structure formation, phase transformations and properties in Cr-Ni austenitic steel after equal-channel angular pressing and heating / S.V. Dobatkin, O.V. Rybal'chenko, G.I. Raab // Mater. Sci. Eng. A. 2007. V.463. Is.1-2. P.41-45.
  37. Добаткин, С.В. Структура и усталостная прочность стали 08Х18Н10Т после равноканального углового прессования и нагрева / С.В. Добаткин, В.Ф. Терентьев, В. Скротцки [и др.] // Металлы. 2012. №6. C.45-56.
  38. Косицына, И.И. Формирование высокопрочного и высокопластичного состояния в метастабильных аустенитных сталях методом равноканально-углового прессования / И.И. Косицына, В.В. Сагарадзе, В.И. Копылов // ФММ. 1999. Т.88. №5. С.84-89.
  39. Segal, V. Equal-channel angular extrusion (ECAE): From a laboratory curiosity to an industrial technology / V. Segal // Metals. 2020. V.10. Is.2. P.244.
  40. Segal, V. Review: Modes and processes of severe plastic deformation / V. Segal // Materials. 2018. V.11. Is.7. P.1175.
  41. Segal, V.M. Fundamentals and engineering of severe plastic deformation / V.M. Segal, I.J. Beyerlein, C.N. Tome, V.N. Chuvil'deev, V.I. Kopylov. - N.Y.: Nova Science Publ., 2010. 542 p.
  42. Huang, C.X. Mechanical behaviors of ultrafine-grained 301 austenitic stainless steel produced by equal-channel angular pressing / Huang C.X., Yang G., Wang C. [et al.] // Met. Mater. Trans. A. 2011. V.42. Is.7. P.2061-2071.
  43. Tirekar, S. Towards engineering of mechanical properties through stabilization of austenite in ultrafine grained martensite-austenite dual phase steel processed by accumulative roll bonding / S. Tirekar, H.R. Jafarian, A.R. Eivani // Mater. Sci. Eng. A. 2017. V.684. P.120-126.
  44. Liu, M. Achieving excellent mechanical properties in type 316 stainless steel by tailoring grain size in homogeneously recovered of recrystallized nanostructures / Liu M., Gong W., Zheng R. [et al.] // Acta Materialia. 2022. V.226. Art.117629.
  45. Miyamoto, H. Corrosion of ultrafine grained materials by severe plastic deformation, an overview / H. Miyamoto // Mater. Trans. 2016. V.57. Is.5. P.559-572.
  46. Ura-Bin¢czyk, E. Effect of grain refinement on the corrosion resistance of 316L stainless steel / E. Ura-Bin¢ czyk // Materials. 2021. V.14. Is.24. Art.7517.
  47. Krawczynska, A.T. Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion / A.T. Krawczynska, W. Chrominski, E. Ura-Binczyk [et al.] // Mater. Design. 2017. V.136. P.34-44.
  48. Krawczynska, A.T.Intergranular corrosion resistance of nanostructured austenitic stainless steel / A.T. Krawczynska, M. Gloc, K. Lublinska //j. Mater. Sci. 2013. V.48. Is.13. P.4517-4523.
  49. Pisarek, M. Effect of hydrostatic extrusion on the corrosion resistance of type 316 stainless steel / M. Pisarek, P. Keedzierzawski, M. Janik-Czachor, K.J. Kurzydlowski // Corrosion. 2008. V.64. Is.2. P.131-137.
  50. Chen, X. Emergence of micro-galvanic corrosion in plastically deformed austenitic stainless steel / X. Chen, M. Gussev, M. Balonis [et al.] // Mater. Design. 2021. V.203. Art.109614.
  51. Pisarek, M. Effect of hydrostatic extrusion on passivity breakdown on 303 austenitic stainless steel in chloride solution / M. Pisarek, P. Kedzierzawski, M. Janik-Czachor, K.J. Kurzydlowski //j. Solid State Electrochemistry. 2009. V.13. Is.2. P.283-291.
  52. Jinlong, L. The effect of grain refinement and deformation on corrosion resistance of passive film formed on the surface of 304 stainless steel / L. Jinlong, L. Hongyun, L. Tongxiang, G. Wenli // Mater. Res. Bull. 2015. V.70. P.896-907.
  53. Hung, E. Impact of nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels / E. Hung, R. Prasath Babu, I. Monnet [et al.] // Appl. Surf. Sci. 2017. V.392. P.1026-1035.
  54. Wang, S.G. Enhanced localized and uniform corrosion resistances of bulk nanocrystalline 304 stainless steel in high-concentration hydrochloric acid solutions at room temperature / Wang S.G., Sun M., Xu Y.H. [et al.] //j. Mater. Sci. Technol. 2018. V.34. Is.12. P.2498-2506.
  55. Tiamiyu, A.A. Corrosion behavior of metastable AISI 321 austenitic stainless steel: Investigating the effect of grain size and prior plastic deformation on its degradation pattern in saline media / A.A. Tiamiyu, U. Eduok, J.A. Szpunar, A.G. Odeshi // Sci. Rep. 2019. V.9. Art.12116.
  56. Zhang, H. Effect of grain ultra-refinement on corrosion behavior of ultra-high strength high nitrogen stainless steel / Zhang H., Xue P., Wu L.H. [et al.] // Corrosion Sci. 2020. V.174. Art.108847.
  57. Wang, S.G. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel / Wang S.G., Sun M., Liu S.Y. [et al.] //j. Mater. Sci. Technol. 2020. V37. P.161-172.
  58. Lei, Y.B. Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing / Lei Y.B., Wang Z.B., Zhang B. [et al.] // Acta Materialia. 2021. V.208. Art.116773.
  59. Mordyuk, B.N. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel / B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, M.O. Iefimov // Mater. Sci. Eng. A. 2007. V.458. Is.1-2. P.253-261.
  60. Tiamiyu, A.A. Effect of prior plastic deformation and deformation rate on the corrosion resistance of AISI 321 austenitic stainless steel / A.A. Tiamiyu, U. Eduok, A.G. Odeshi, J.A. Szpunar // Mater. Sci. Eng. A. 2019. V.745. P.1-9.
  61. Бордзыка, А.М. Релаксация напряжений в металлах и сплавах / А.М. Бордзыка, Л.Б. Гецов. - М.: Наука, 1978. 256 с.
  62. Микропластичность: cб. статей под ред. В.Н. Геминова, А.Г. Рахштадта / пер. с англ. Е.К. Захарова. - М.: Металлургия, 1972. 340 с.
  63. Головин, С.А. Микропластичность и усталость металлов / С.А. Головин, А. Пушкар. - М.: Металлургия, 1980. 240 с.
  64. Luo, J. Investigation of high-temperature stress relaxation behavior of Ti-6Al-4V sheet / Luo J., Xiong W., Li X., Chen J. // Mater. Sci. Eng. A. 2019. V.743. P.755-763.
  65. Liu, P. Relationship between constant-load creep, decreasing-load creep and stress relaxation of titanium alloy / Liu P., Zong Y., Shan D., Guo B. // Mater. Sci. Eng. A. 2015. V.638. P.106-113.
  66. Peng, H.-L. Effect of grain size on high-temperature stress relaxation behavior of fine-grained TC4 titanium alloy / Peng H.-L., Li X.-F., Chen X. [et al.] // Trans. Nonferrous Metals Soc. China. 2020. V.30. Is.3. P.668-677.
  67. Butt, M.Z. On the strength and stress-relaxation response of fine-grained Cu-42,2at%Zn-0,6at%Pd alloy polycrystals / M.Z. Butt, M.S. Khiliji //j. Alloys Compounds. 2009. V.479. Is.1-2. P.252-256.
  68. Suzuki, Y. Effect of surface area of grain boundaries on stress relaxation behavior in pure copper over wide range of grain size / Y. Suzuki, K. Ueno, K. Murasawa [et al.] // Mater. Sci. Eng. A. 2020. V.794. Art.139585.
  69. Butt, M.Z. Loss a stress equivalence in the strain-rate sensitivity of flow stress in fine-grain polycrystalline copper / M.Z. Butt, M. Ashraf // Phys. Status Solidi (a). 1999. V.173. Is.2. P.349-356.
  70. Mohebbi, M.S. Stress relaxation and flow behavior of ultrafine grained AA1050 / M.S. Mohebbi, A. Akbarazadeh, Y.-O. Yoon, S.-K. Kim // Mechanics of Mater. 2015. V.89. P.23-34.
  71. Wang, Y.M. Temperature-depended strain rate sensitivity and activation volume of nanocrystalline Ni / Wang Y.M., Hamza A.V., Ma E. // Acta Materialia. 2006. V.54. Is.10. P.2715-2726.
  72. Kapoor, R. Deformation behavior of an ultrafine-grained Al-Mg alloy produced by equal-channel angular pressing / R. Kapoor, J.K. Chakravartty // Acta Materialia. 2007. V.55. Is.16. P.5408-5418.
  73. Ko, Y.G. Load relaxation behavior of ultra-fine grained Ti-6Al-4V alloy / Ko Y.G., Kim J.H., Lee C.S. [et al.] // Mater. Sci. Forum. 2005. V.475-479. P.2955-2960.
  74. Goyal, A. Grain boundary sliding and strain rate sensitivity of coarse and fine/ultrafine grained 5082 aluminum alloys / A. Goyal, V. Doquet, A. Pouya // Met. Mater. Trans. A. 2020. V.51. Is.3. P.1109-1122.
  75. Чувильдеев, В.Н. Влияние процессов возврата и рекристаллизации на параметры соотношения Холла-Петча в субмикрокристаллических металлах. I. Экспериментальные исследования / В.Н. Чувильдеев, А.В. Нохрин, М.М. Мышляев [и др.] // Металлы. 2018. №1. C.81-102.
  76. V.N. Chuvil'deev, A.V. Nokhrin, M.M. Myshlyaev [et al.] "Effect of Recovery and Recrystallization on the Hall-Petch Relation Parameters in Submicrocrystalline Metals: I. Experimental Studies".Russian Metallurgy (Metally). 2018. №1. P.71-89.
  77. Чувильдеев, В.Н. Неравновесные границы зерен в металлах. Теория и приложения / В.Н. Чувильдеев. - М.: Физматлит, 2004. 304 с.
  78. Пиккеринг, Ф.Б. Физическое металловедение и разработка сталей / Ф.Б. Пиккеринг. - М.: Металлургия, 1982. 182 с.
  79. Гольдштейн, М.И. Металлофизика высокопрочных сплавов / М.И. Гольдштейн, В.С. Литвинов, Б.М. Бронфин. - М.: Металлургия, 1986. 312 с.
  80. Чувильдеев, В.Н. Влияние процессов возврата и рекристаллизации на параметры соотношения Холла-Петча в субмикрокристаллических металлах. II. Модель расчета параметров соотношения Холла-Петча / В.Н. Чувильдеев, А.В. Нохрин, М.М. Мышляев [и др.] // Металлы. 2018. №3. C.73-87.
  81. V.N. Chuvil'deev, A.V. Nokhrin, M.M. Myshlyaev [et al.] "Effect of Recovery and Recrystallization on the Hall-Petch Relation Parameters in Submicrocrystalline Metals: II. Model for Calculating the Hall-Petch Relation Parameters".Russian Metallurgy (Metally). 2018. №5. P.487-499.
  82. Чувильдеев, В.Н. Влияние процессов возврата и рекристаллизации на параметры соотношения Холла-Петча в субмикрокристаллических металлах. III. Модель влияния процессов возврата и рекристаллизации на параметры соотношения Холла-Петча / В.Н. Чувильдеев, А.В. Нохрин, М.М. Мышляев [и др.] // Металлы. 2018. №5. C.83-87.
  83. V.N. Chuvil'deev, A.V. Nokhrin, M.M. Myshlyaev [et al.] "Effect of Recovery and Recrystallization on the Hall-Petch Relation Parameters in Submicrocrystalline Metals: III. Model for the Effect of Recovery and Recrystallization on the Hall-Petch Relation Parameters".Russian Metallurgy (Metally). 2018. №9. P.867-879.
  84. Фрост, Г.Дж. Карты механизмов деформации / Г.Дж. Фрост, М.Ф. Эшби. - Челябинск: Металлургия, 1989. 328 с.
  85. Кузнецов, А.Р. Исследование деформационно-стимулированной сегрегации в сплаве Fe-Cr-Ni / А.Р. Кузнецов, С.А. Стариков, В.В. Сагарадзе [и др.] // ФММ. 2004. Т.98. №3. С.65-71.
  86. Дерягин, А.И. Низкотемпературное механоиндуцированное атомное расслоение в хромоникелевых сталях / А.И. Дерягин, В.A. Завалишин, В.В. Сагарадзе, А.Р. Кузнецов // ФММ. 2000. Т.89. №6. С.82-93.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##