Synthesis, Structure, and Magnetic Properties of 2Ni–Al–Mn-Based Alloy
- 作者: Busurina M.L.1, Boyarchenko O.D.1, Zakharov K.V.1, Andreev D.E.1, Morozov Y.G.1, Sychev A.E.1
-
隶属关系:
- Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
- 期: 编号 6 (2023)
- 页面: 65-70
- 栏目: Articles
- URL: https://journals.rcsi.science/0869-5733/article/view/247392
- DOI: https://doi.org/10.31857/S0869573323060083
- EDN: https://elibrary.ru/EKMSXY
- ID: 247392
如何引用文章
详细
For the first time, an intermetallic 2Ni–Mn–Al-based alloy is prepared by self-propagating high-temperature synthesis (SHS) combined with centrifugal casting. According to X-ray diffraction data, the main phase of the SHS product is the (Ni,Mn)3Al nickel aluminide solid solution with the partial substitution of manganese for nickel. The study of the microstructure shows a low aluminum content at the boundaries of the (Ni,Mn)3Al main phase. The averaged microhardness of the synthesized alloy is 8500 ± 45 MPa and the peak hardness is 11500 MPa. The alloy exhibits soft magnetic properties. The maximum magnetization in a field of 796 kA/m (10 kOe) is Js = 1.1 (A m2)/kg (emu/g) and the coercive force is Hc = 14.3 kA/m (179.7 Oe).
作者简介
M. Busurina
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: busurina@ism.ac.ru
Chernogolovka, Russia
O. Boyarchenko
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: busurina@ism.ac.ru
Chernogolovka, Russia
K. Zakharov
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: busurina@ism.ac.ru
Chernogolovka, Russia
D. Andreev
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: busurina@ism.ac.ru
Chernogolovka, Russia
Yu. Morozov
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: busurina@ism.ac.ru
Chernogolovka, Russia
A. Sychev
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: busurina@ism.ac.ru
Chernogolovka, Russia
参考
- Базылева, О.А. Тенденции развития интерметаллидных сплавов на основе никеля / О.А. Базылева, О.Г. Оспенникова, Э.Г. Аргинбаева, Е.Ю. Летникова, А.В. Шестаков // Авиац. матер. и технол. 2017. №5. С.104-115. doi: 10.18577/2071-9140-2017-0-S-104-115.
- Bochenek, K. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications / K. Bochenek, M. Basista // Progr. Aerosp. Sci. 2015. V.79 №1-2. P.1-11. doi: 10.1016/j.paerosci.2015.09.003.
- Бондаренко, Ю.А. Исследования по созданию новой высокотемпературной жаростойкой матрицы на основе интерметаллидов NiAl-Ni3Al / Ю.А. Бондаренко, О.А. Базылева, А.И. Раевских, А.Р. Нарский // Науч.-техн. журн. и тр. "ВИАМ". 2018. Т.11. С.3-11. dx.doi.org/10.18577/2307-6046-2018-0-11-3-11.
- Zhou, Q. Fabrication and characterization of the Ni-Al energetic structural material with high energy density and mechanical properties / Zhou Q., Hu Q.W., Wang B., Zhou B.B., Chen P.W., Liu R. //j. Alloys Compd. 2020. V.832. Art.154894. https://doi.org/10.1016/j.jallcom.2020.154894
- Awotunde, M.A. NiAl intermetallic composites: a review of processing methods, reinforcements and mechanical properties / M.A. Awotunde, O.O. Ayodele, A.O. Adegbenjo, A.M. Okoro, M.B. Shongwe, P.A. Olubambi // Intern. J. Advanc. Manuf. Technol. 2019. V.104. P.1733-1747. doi.org/10.1007/s00170-019-03984-9.
- Wu, D. Corrosion behavior of Ni and nickel aluminide coatings exposed in a biomass fired power plant for two years / Wu D., K. Dahl, T. Christiansen, M. Montgomery, J. Hald // Surf. Coat. Technol. 2019.
- Graf, T. Simple rules for the understanding of Heusler compounds / T. Graf, C. Felser, S. Parkin // Progress in Solid State Chemistry. 2011. V.39. P.1-50. https://doi.org/10.1016/j.progsolidstchem.2011.02.001.
- Белослудцева, Е.С. Микроструктура и свойства сплавов с эффектами памяти формы на основе интерметаллида Ni-Mn, легированных Ti, Al, Ga и Fe / Е.С. Белослудцева, А.В. Пушин, А.Э. Свирид, В.Г. Пушин, Т.П. Толмачев // Вестн. Перм. нац. исслед. политехн. ун-та. Машиностроение. Материаловедение. 2019. Т.2. №3. С.33-41.
- Sutou, Y. Ordering and martensitic transformations of Ni2AlMn Heusler alloys / Sutou Y., Ohmuna I., Kainuma R., Ishida K. // Metal. Mater. Trans. A. 1998. V.29. P.2225-2227. https://doi.org/10.1007/s11661-998-0047-8.
- Gejima, F. Magnetic transformation of Ni2AlMn Heusler-type shape memory alloys / F. Gejima, Y. Sutou, R. Kainuma, K. Ishida // Metal. Mater. Trans. A. 1999. V.30. P.2721-2723. https://doi.org/10.1007/s11661-999-0312-5.
- Lyange, M.V. Structural and magnetic properties of Ni-Mn-Al Heusler alloys: a review / M.V. Lyange, E. Barmina, V. Khovaylo // Mater. Sci. Found. Online: 2015-03-23. V.81-82. P.232-242. https://www.scientific.net/MSFo.81-82.232.
- Soegijono, B. Structure and magnetic properties of Ni-Al and Ni-Mn-Al compound produced by arc melting / B. Soegijono, H. Notonegoro, J. Setiawan // U.P.B. Sci. Bull. Ser. B. 2018. V.80. №4. P.259-266.
- Knipling, K.E. Criteria for developing castable, creep-resistant aluminum-based alloys: a review / K.E. Knipling, D.C. Dunand, D.N. Seidman // Z. Metallkd. 2006. V.97. №3. P.246-265. doi: 10.3139/146.101249.
- Dais, S. Nuclear-magnetic-resonance study of self-diffusion in aluminium / S. Dais, R. Messer, A. Seeger // Mater. Sci. Forum. 1987. V.15-18. January. P.419-424. https://doi.org/10.4028/www.scientific.net/MSF.15-18.419
- Rummel, G. Diffusion of implanted 3d-transition elements in aluminum. Pt.I.: Temperature dependence / G.Rummel, T. Zumkley, M. Eggersmann, K. Freitag, H. Mehrer // Z. Metallkd. 1995. V.86. P.122-130.
- Erdelyi, G. Determination of diffusion coefficient of Zn, Co and Ni in aluminium by a resistometric method / G. Erdelyi, D.L. Beke, F.J. Kedves, I. Godeny // Phil. Mag. 1978. V.38. P.445-462. doi.org/10.1080/13642817808246394.
- Kainuma, R. Phase equilibria and stability of the B2 phase in the Ni-Mn-Al and Co-Mn-Al systems / R. Kainuma, M. Ise, K. Ishikawa, I. Ohnuma, K. Ishida //j. Alloys Comp. 1998. V.269. P.173-180. https://doi.org/10.1016/S0925-8388(98)00127-3.
- Поварова, К.Б. Физико-химические закономерности взаимодействия алюминида никеля с легирующими элементами. I. Образование твердых растворов на основе алюминидов никеля / К.Б. Поварова, Н.К. Казанская, А.А. Дроздов, A.E. Морозов // Металлы. 2006. №5. С.58-71.
- K.B. Povarova, N.K. Kazanskaya, A.A. Drozdov, A.E. Morozov "Physicochemical laws of the interaction of nickel aluminides with alloying elements. I. Formation of nickel aluminide-based solid solutions".Russian Metallurgy (Metally). 2006. V.5. P.415-426.
- Kainuma, R. Ordering, martensitic and ferromagnetic transformations in Ni-Al-Mn Heusler shape memory alloys / R. Kainuma, F. Gejima, Y. Sutou, I. Ohnuma, K. Ishida // Mater. Trans. 2000. V.41. P.943-949. doi.org/10.2320/matertrans1989.41.943.
- Kanomata, T. Effect of hydrostatic pressure on the magnetic transition temperatures of MnRhAs / Kanomata T., Shirakawa K., Yasui H., Kaneko T.J. // Magn. Magn. Mater. 1987. V.68. Is.3. September. P.286-290. https://doi.org/10.1016/0304-8853(87)90002-3.
- Kositsyn, S.V. Phase and structural transformations in the alloys based on monoaluminide of nickel / S.V. Kositsyn, I.I. Kositsyna // Usp. Fiz. Met. 2008. V.9. №2. P.195-258. https://doi.org/10.15407/ufm.09.02.195.
- Balanetskyy, S. The Al-rich region of the Al-Mn-Ni alloy system. Pt.I. Ternary phases at 750-950 °C / S. Balanetskyy, G. Meisterernst, M. Feuerbacher //j. Alloys and Comp. 2011. V.509. Is.9. P.3787-3794. https://doi.org/10.1016/j.jallcom.2010.10.185.
- Azhagarsamy, P. Nickel aluminide intermetallic composites fabricated by various processing routes: a review / P. Azhagarsamy, K. Sekar, K.P. Mural // Mater. Sci. Technol. 2022. V.38. №9. P.556-571. doi.org/10.1080/02670836.2022.2062648.
- Merzhanov, A.G. Self-propagating high-temperature synthesis of refractory inorganic compounds / A.G. Merzhanov, I.P. Borovinskaya // Dokl. Akad. Nauk SSSR. 1972. V.204. №2. P.366-369.
- Sytschev, A.E.Combustion synthesis and magnetic properties of Ni-Al-Mn based alloy / A.E. Sytschev, N.A. Kochetov, P.A. Lazarev, Yu.G. Morozov, S.G. Vadchenko, I.D. Kovalev, M.L. Busurina // Intern. J. Self-Propag. High-Temp. Synth. 2022. V.31. P.95-103. https://doi.org/10.3103/S106138622202011X.
- Yukhvid, V.I. Effect of convective motion on the flame structure in combustion waves propagating in heterogeneous systems under natural and artificial gravity conditions / V.I. Yukhvid // Combust Explos Shock Waves. 2009. V.45. P.421-427. https://doi.org/10.1007/s10573-009-0052-2.
- Andreev, D.E. Regular features of combustion of CaO2/Al/Ti/Cr/B hybrid mixtures / D.E. Andreev, V.N. Sanin, V.I. Yukhvid, D.Yu. Kovalev // Combust Explos Shock Waves. 2011. V.47. P.671-676. https://doi.org/10.1134/S0010508211060074.
- Sanin, V.N. Production of intermetallic catalysts of deep CO and hydrocarbon oxidation / V.N. Sanin, D.E. Andreev, E.V. Pugacheva, S.Ya. Zhuk, V.N. Borshch, V.I. Yukhvid // Inorg. Mater. 2009. V.45. P.777-784. https://doi.org/10.1134/S0020168509070139.
- Yukhvid, V.I.Combustion of titanium oxide based thermite systems with a complex reducing agent and an energy additive under the influence of overload / V.I. Yukhvid, D.E. Andreev, D.M. Ikornikov, V.N. Sanin, N.V. Sachkova, I.D. Kovalev // Combust Explos Shock Waves. 2019. V.55. P.671-677. https://doi.org/10.1134/S0010508219060066.
- MSI Eureka in Springer Materials. Partial isothermal section at 1100 °C. Figure 4 from Al-Mn-Ni Ternary Phase Diagram Evaluation / Tomoo Suzuki and MSIT®® (1993) Effenberg, G. (Ed.). https://materials.springer.com/msi/phase-dagram/docs/sm_msi_r_10_015076_01_full_LnkDia3.
补充文件
