Strength and Relaxation and Corrosion Resistance of Ultrafine-Grained Austenitic 08Kh18N10T Steel Produced by ECAP: III. Deformation Behavior at Elevated Temperatures
- 作者: Kopylov V.I.1, Chuvil'deev V.N.2, Gryaznov M.Y.1, Shotin S.V.1, Nokhrin A.V.1, Likhnitskiy K.V.1, Chegurov M.K.1, Pirozhnikova O.E1
-
隶属关系:
- National Research Lobachevsky State University of Nizhny Novgorod
- Lobachevsky State University
- 期: 编号 6 (2023)
- 页面: 35-52
- 栏目: Articles
- URL: https://journals.rcsi.science/0869-5733/article/view/247386
- DOI: https://doi.org/10.31857/S0869573323060058
- EDN: https://elibrary.ru/EJKTQS
- ID: 247386
如何引用文章
详细
The deformation behavior of an ultrafine-grained (UFG) 08Kh18N10T steel at elevated temperatures (450–900°C) has been studied. The maximum elongation to failure (~250%) is detected at a temperature of 750°C. The deformation of the UFG steel at elevated temperatures is controlled by the intensities of simultaneous processes of grain-boundary sliding and power-law creep. The contribution of each mechanism depends on the grain growth rate under superplasticity conditions, which affects the rate of defect accumulation at migrating grain boundaries. The fracture of the UFG steel has a cavitation character: the fracture and specimen surfaces after high-temperature tests contain large elongated pores having formed on nonmetallic inclusions and submicron pores having formed on σ-phase particles.
作者简介
V. Kopylov
National Research Lobachevsky State University of Nizhny Novgorod
Email: kopylov@nifti.unn.ru
Nizhny Novgorod, Russia
V. Chuvil'deev
Lobachevsky State University
Email: kopylov@nifti.unn.ru
Nizhny Novgorod, Russia
M. Gryaznov
National Research Lobachevsky State University of Nizhny Novgorod
Email: kopylov@nifti.unn.ru
Nizhny Novgorod, Russia
S. Shotin
National Research Lobachevsky State University of Nizhny Novgorod
Email: kopylov@nifti.unn.ru
Nizhny Novgorod, Russia
A. Nokhrin
National Research Lobachevsky State University of Nizhny Novgorod
Email: kopylov@nifti.unn.ru
Nizhny Novgorod, Russia
K. Likhnitskiy
National Research Lobachevsky State University of Nizhny Novgorod
Email: kopylov@nifti.unn.ru
Nizhny Novgorod, Russia
M. Chegurov
National Research Lobachevsky State University of Nizhny Novgorod
Email: kopylov@nifti.unn.ru
Nizhny Novgorod, Russia
O. Pirozhnikova
National Research Lobachevsky State University of Nizhny Novgorod
编辑信件的主要联系方式.
Email: kopylov@nifti.unn.ru
Nizhny Novgorod, Russia
参考
- Сагарадзе, В.В. Коррозионное растрескивание аустенитных и ферритоперлитных сталей / В.В. Сагарадзе, Ю.И. Филиппов, М.Ф. Матвиенко [и др.]. - Екатеринбург: Изд. УрО РАН, 2004. 228 с.
- Сагарадзе, В.В. Упрочнение и свойства аустенитных сталей / В.В. Сагарадзе, А.И. Уваров. - Екатеринбург: Изд. ИФМ им. М.Н. Михеева РАН, 2013. 720 с.
- Lo, K.H. Recent developments in stainless steels / Lo K.H., Shek C.H., Lai J.K.L. // Mater. Sci. Eng. R. 2009. V.65. Is.4-6. P.39-104.
- J‡rvenp‡‡, A. Processing and properties of reversion-treated austenitic stainless steels / A. J‡rvenp‡‡, M. Jaskari, A. Kisko, P. Karjalainen // Metals. 2020. V.10. Is.2. P.281.
- Sohrabi, M.J. Deformation-induced martensite in austenitic stainless steels: A review / M.J. Sohrabi, M. Naghizadeh, H. Mirzadeh // Arch. Civil Mech. Eng. 2020. V.20. Is.3. P.124.
- Tikhonova, M. Microstructure and mechanical properties of austenitic stainless steels after dynamic and post-dynamic recrystallization treatment / M. Tikhonova, R. Kaibyshev, A. Belyakov // Adv. Eng. Mater. 2018. V.20. Is.7. Art.1700960.
- Cheng, G.-J. Warm ductility enhanced by austenite reversion in ultrafine-grained duplex steel / Cheng G.-J., Gault B., Huang C.-Y. [et al.] // Acta Materialia. 2018. V.148. P.344-354.
- Cao, Z. Revealing the superplastic deformation behaviors of hot rolled 0,10C5Mn2Al steel with an initial martensitic microstructure / Cao Z., Wu G., Sun X. [et al.] // Scripta Materialia. 2018. V.152. P.27-30.
- Cheng, G.-J. Extraordinary warm ductility of a Mn-rich high-strength steel achieved at temperature below 0,5Tm / Cheng G.-J., Lai Z.-H., Jia T. [et al.] // Mater. Sci. Eng. A. 2021. V.803. Art.140704.
- Chen, S. High-temperature plasticity enhanced by multiple secondary phases in a high-Si austenitic stainless steel / Chen S., Liang T., Ma G. [et al.] // Acta Metallurgica Sinica (English Letters). 2022. V.35. Is.9. P.1519-1530.
- Valiev, R.Z. Principles of equal-channel angular pressing as a processing tool for grain refinement / R.Z. Valiev, T.G. Langdon // Progress in Mater. Sci. 2006. V.51. Is.7. P.881-981.
- Новиков, И.И. Сверхпластичность сплавов с ультрамелким зерном / И.И. Новиков, В.К. Портной. - М.: Металлургия, 1981. 168 с.
- Segal, V.M. Fundamentals and engineering of severe plastic deformation / V.M. Segal, I.J. Beyerlein, C.N. Tome, V.N. Chuvil'deev, V.I. Kopylov. - N.Y.: Nova Science Publ., 2010. 542 p.
- Lu, Z. Role of grain size and shape in superplasticity in metals / Lu Z., Huang X., Huang J. // Frontiers in Mater. 2021. V.8. Art.641928.
- Sun, G.S. Low temperature superplasticity-like deformation and fracture behavior of nano/ultrafine-grained metastable austenitic stainless steel / G.S. Sun, L.X. Du, J. Hu // Mater. Design. 2017. V.117. P.223-231.
- Xu, D.M. On the deformation mechanism of austenitic stainless steel at elevated temperatures: A critical analysis of fine-grained versus coarse-grained structure / Xu D.M., Li G.Q., Wan X.L. [et al.] // Mater. Sci. Eng. A. 2020. V.773. Art.138722.
- Tsuchiyama, T. Effect of initial microstructure on superplasticity in ultrafine grained 18Cr-9Ni stainless steel / Tsuchiyama T., Nakamura Y., Hidaka H., Takai S. // Mater. Trans. 2004. V.45. Is.7. P.2259-2263.
- Katoh, M. Thermo-mechanical treatment with multi-direction upsetting for improvement of superplasticity in SUS304 / M. Katoh, Y. Torisaka // Tetsu-to-Hanage /j. Iron Steel Inst. Japan. 2003. V.9. Is.10. P.34-39.
- Astafurova, E. On the superplastic deformation in vanadium-alloyed high-nitrogen steel / E. Astafurova, V. Moskvina, M. Panchenko [et al.] // Metals. 2020. V.10. Is.1. P.27.
- Пат.RU 2488637. МПК C1. Способ получения заготовок сталей аустенитного класса с нанокристаллической структурой / Кайбышев Р.О., Беляков А.Н., Тихонова М.С., Дудко В.А.; заяв. №2011148539/02 от 29.11.2011; опубл. 27.07.2013. Бюл.21. https://www.elibrary.ru/item.asp?id=37513969
- Jiang, X.-G. Cavitation and cavity-induced fracture during superplastic deformation / Jiang X.-G., Earthman J.C., Mohamed F.A. //j. Mater. Sci. 1994. V.29. Is.21. P.5499-5514.
- Jeong, H.-B. Ultralow-temperature superplasticity of high strength Fe-10Mn-3,5Si steel / Jeong H.-B., Choi S.-W., Kang S.-H., Lee Y.-K. // Mater. Sci. Eng. A. 2022. V.848. Art.143408.
- Misra, R.D.K. Phase reversed transformation-induced nanograined microalloyed steel: Low temperature superplasticity and fracture / R.D.K. Misra, J. Hu, I.V.S. Yashwanth [et al.] // Mater. Sci. Eng. A. 2016. V.668. P.105-111.
- Kang, S.-H. Grain boundary sliding during high-temperature tensile deformation in superplastic Fe-6,6Mn-2,3Al steel / Kang S.-H., Choi S.-W., Im Y.-D., Lee Y.-K. // Mater. Sci. Eng. A. 2020. V.780. Art.139174.
- Misra, R.D.K. Relationship of grain size and deformation mechanism to the fracture behavior in high strength - high ductility nanostructured austenitic stainless steel / Misra R.D.K., Wan X.L., Challa V.S.A. [et al.] // Mater. Sci. Eng. A. 2015. V.626. P.41-50.
- Zergani, A. Mechanical response of a metastable austenitic stainless steel under different deformation modes / A. Zergani, H. Mirzadeh, R. Mahmudi // Mater. Sci. Techn. 2021. V.37. Is.1. P.103-109.
- Zergani, A. Unraveling the effect of deformation temperature on the mechanical behavior and transformation-induced plasticity of the SUS304L stainless steel / A. Zergani, H. Mirzadeh, R. Mahmudi // Steel Res.Intern. 2020. V.91. Is.9. Art.2000114.
- Sakai, T. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions / T. Sakai, A. Belyakov, R. Kaibyshev [et al.] // Progress in Mater. Sci. 2014. V.60. P.130-207.
- Pulino-Sagradi, D. Effect of temperature and strain rate on cavitation in a superplastic duplex stainless steel / D. Pulino-Sagradi, A.M.M. Nazar, J.-J. Ammann, R.E. Medrano // Acta Materialia. 1997. V.45. Is.11. P.4663-4666.
- Perevezentsev, V.N. The theory of structural superplasticity. IV. Cavitation during superplastic deformation / V.N. Perevezentsev, V.V. Rybin, V.N. Chuvil'deev // Acta Metallurgica et Materialia. 1992. V.40. Is.5. P.915-924.
- Чувильдеев, В.Н. Исследование сверхпластичности высокопрочных субмикрокристаллических алюминиевых сплавов Al-0,5Mg-Sc / В.Н. Чувильдеев, М.Ю. Грязнов, С.В. Шотин [и др.] // Металлы. 2021. №5. С.70-85.
- V.N. Chuvil'deev, M.Yu. Gryaznov, S.V. Shotin [et al.] "Superplasticity of High-Strength Submicrocrystalline Al-0.5Mg-Sc Aluminum Alloys".Russian Metallurgy (Metally). 2021. №9. P.1102-1115.
- Перевезенцев, В.Н. Зарождение пор на межфазной границе преципитат-матрица в условиях сверхпластической деформации / В.Н. Перевезенцев, В.В. Рыбин, В.Н. Чувильдеев // Поверхность: Физика, химия, механика. 1986. №11. С.130-139.
- Perevezentsev, V.N. The theory of structural superplasticity. I. The physical nature of the superplasticity phenomenon / V.N. Perevezentsev, V.V. Rybin, V.N. Chuvil'deev // Acta Metallurgica et Materialia. 1992. V.40. Is.5. P.887-894.
- Perevezentsev, V.N. The theory of structural superplasticity. II. Accumulation of defects on the intergranular and interphase boundaries. Accomodation of the grain-boundary sliding. The upper bound of the superplastic strain rate / V.N. Perevezentsev, V.V. Rybin, V.N. Chuvil'deev // Acta Metallurgica et Materialia. 1992. V.40. Is.5. P.895-905.
- Patankar, S.N. Sigma phase precipitation during superplastic forming of duplex stainless steel / S.N. Patankar, M.J. Tan // Materials at High Temperatures. 2022. V.19. Is.1. P.41-44.
- Wang, Q. d-Ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting / Q. Wang, S. Chen, L. Rong // Met. Mater. Trans. A. 2020. V.51. Is.6. P.2998-3008.
- Padilha, A.F. Decomposition of austenite in austenitic stainless steels / A.F. Padilha, P.R. Rios // ISIJ Intern. 2002. V.42. Is.4. P.325-327.
- Schwind, M. s-Phase precipitation in stabilized austenitic stainless steels / M. Schwind, J. K‡llqvist, J.-O. Nilsson [et al.] // Acta Materialia. 2000. V.48. Is.10. P.2473-2481.
- Kosec, L. Transformation of austenite during isothermal annealing at 600-900 °C for heat-resistant stainless steel / L. Kosec, SÚ. SÚ avli, S. KozÚuh [et al.] //j. Alloys Comp. 2013. V.567. P.59-64.
- Kherrouba, N. Experimental study and simulation of the s phase precipitation in the stabilized 316Ti austenitic stainless steel / N. Kherrouba, B. Mehdi, R. Kouba [et al.] // Mater. Chem. Phys. 2021. V.266. Art.124574.
- Barcik, J. Mechanism of s-phase precipitation in Cr-Ni austenitic steel /j. Barcik // Mater. Sci. Techn. 1988. V.4. Is.1. P.5-15.
- Thorvaldsson, T. Precipitation reactions in Ti-stabilized austenitic stainless steel / T. Thorvaldsson, G.L. Dunlop // Metal Sci. 1980. V.14. Is.11. P.513-518.
- Разумов, И.К. Неравновесные фазовые превращения в сплавах при интенсивной пластической деформации / И.К. Разумов, А.Е. Ермаков, Ю.Н. Горностырев, Б.Б. Страумал // Успехи физ. наук. 2020. Т.190. №8. С.785-810.
- Liu, Z. High-temperature creep property deterioration of the alumina-forming austenitic steel: Effect of s phase / Liu Z., Ma Q., Jiang C. [et al.] // Mater. Sci. Eng. A. 2022. V.846. Art.143126.
- Kral, P. Creep resistance of S304H austenitic stainless steel processed by high-pressure sliding / P. Kral, J. Dvorak, V. Sklenicka [et al.] // Materials. 2022. V.15. Is.1. P.331.
- Sourmail, T. Precipitation in creep resistant austenitic stainless steels / T. Sourmail // Mater. Sci. Techn. 2001. V.17. Is.1. P.1-14.
- Warren, A.D. The role of ferrite in type 316H austenitic stainless steels on the susceptibility to creep cavitation / A.D. Warren, L.J. Griffiths, R.L. Harniman [et al.] // Mater. Sci. Eng. A. 2015. V.635. P.59-69.
- Hsieh, C.-C. Dispersion strengthening behavior of s phase in 304 modified stainless steels during 1073 K hot rolling / Hsieh C.-C., Lin D.-Y., Wu W. // Metals and Mater.Intern. 2007. V.13. Is.5. P.359-363.
- Zhou, Q. An insight into oversaturated deformation-induced sigma precipitation in Super304H austenitic stainless steel / Zhou Q., Liu J., Gao Y. // Mater. Design. 2019. V.181. Art.108056.
- Li, S. Effect of microstructure changes on the superplasticity of 2205 duplex stainless steel / Li S., Ren X., Ji X., Gui Y. // Mater. Design. 2014. V.55. P.146-151.
- Hsieh, C.-C. Precipitation behavior of s phase in 19Cr-9Ni-2Mn and 18Cr-0,75Si stainless steels hot-rolled at 800 °C with various reduction ratios / Hsieh C.-C., Lin D.-Y., Wu W. // Mater. Sci. Eng. A. 2007. V.467. Is.1-2. P.181-189.
- Zhou, Q.Interpretation for the fast sigma phase precipitation in the high intensity shot peened nanocrystallined Super304H stainless steel / Zhou Q., Wang R., Zheng Z., Gao Y. // Appl. Surface Sci. 2018. V.462. P.804-814.
- Zhou, Q. The heritage of the twin microstructure in the sigma phase formed from deformed austenite / Zhou Q., Liu J., Gao Y. //j. Alloys Comp. 2020. V.849. Art.156424.
- Park, S.H.C. Rapid formation of the sigma phase in 304 stainless steel during friction stir welding / S.H.C. Park, Y.S. Sato, H. Kokawa [et al.] // Scripta Materialia. 2003. V.49. Is.12. P.1175-1180.
- Nieh, T.G. Superplasticity in metals and ceramics / T.G. Nieh, J. Wadsworth, O.D. Sherby. - Cambridge: Univ. Press, 1997. 273 p.
- Jian, M. Processing of submicron grain 304 stainless steel / M. Jian, T. Christman //j. Mater. Res. 1996. V.11. Is.11. P.2677-2680.
- Фрост, Г.Дж. Карты механизмов деформации / Г.Дж. Фрост, М.Ф. Эшби. - Челябинск: Металлургия, 1989. 328 с.
- Чувильдеев, В.Н. Влияние размера зерна и структурного состояния границ зерен на параметры низкотемпературной и высокоскоростной сверхпластичности нано- и микрокристаллических сплавов, полученных методами интенсивного пластического деформирования / В.Н. Чувильдеев, А.В. Щавлева, А.В. Нохрин [и др.] // ФТТ. 2010. Т.52. Вып.5. С.28-37.
- Чувильдеев, В.Н. Деформационное упрочнение в условиях структурной сверхпластичности / В.Н. Чувильдеев, О.Э. Пирожникова, А.В. Нохрин, М.М. Мышляев // ФТТ. 2007. Т.49. Вып.4. С.650-657.
- Мартин, Дж. Стабильность микроструктуры металлических систем / Дж. Мартин, Р. Доэрти. - М.: Атомиздат, 1978. 280 с.
- Чувильдеев, В.Н. Неравновесные границы зерен в металлах. Теория и приложения / В.Н. Чувильдеев. - М.: Физматлит, 2004. 304 с.
- Чувильдеев, В.Н. Анализ влияния температуры интенсивного пластического деформирования на диффузионные свойства границ зерен ультрамелкозернистых металлов / В.Н. Чувильдеев, М.М. Мышляев, А.В. Нохрин [и др.] // Металлы. 2017. №3. С.67-76.
- V.N. Chuvil'deev, M.M. Myshlyaev, A.V. Nokhrin, "Effect of the severe plastic deformation temperature on the diffusion properties of the grain boundaries in ultrafine-grained metals".Russian Metallurgy (Metally). 2017. №5. P.413-425.
- Чувильдеев, В.Н. Микромеханизм деформационно-стимулированной зернограничной самодиффузии. Часть 3. Влияние потоков решеточных дислокаций на диффузионные свойства границ зерен / В.Н. Чувильдеев, О.Э. Пирожникова // ФММ. 1996. Т.82. №1. С.105-115.
- Чувильдеев, В.Н. Анализ изменения диффузионных свойств неравновесных границ зерен при рекристаллизации и сверхпластической деформации субмикрокристаллических металлов и сплавов / В.Н. Чувильдеев, А.В. Нохрин, О.Э. Пирожникова [и др.] // ФТТ. 2017. Т.59. №8. С.1561-1569.
补充文件
