Kinetika vysokotemperaturnoy nitridizatsii splavov na osnove Zr-U

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The kinetic patterns of nitride formation have been established and the sequence of structural transformations characterizing high-temperature (at 1900 °C) nitridation of Zr-U alloys containing 2 and 5 wt.% U in the range from 3.5 to 60 minutes is presented. During high-temperature saturation with nitrogen for each composition, the solid solution (Zr,U) decomposes with the formation of composite structures ZrN-(ZrN1-n/UxEy/U)-ZrN (where E is O, N; n, x, y are stoichiometric coefficients ). During the decomposition of the solid solution, zirconium nitride is formed and a phase of metallic uranium is released, which accumulates impurities contained in the initial solid solution in the central part of the sample. Kinetic curves for a temperature of 1900 °C are approximated by an exponential law and correspond to the nitridation of zirconium. The nitridation rate of the (Zr,U) solid solution increases with increasing uranium content. To complete the formation process of a compact nitride solid solution of (Zr,U)N of stoichiometric composition, it is necessary to increase the temperature and increase the reaction duration.

作者简介

I. Kovalev

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Email: vankovalskij@mail.ru

G. Kochanov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Email: vankovalskij@mail.ru

L. L'vov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Email: vankovalskij@mail.ru

V. Zufman

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Email: vankovalskij@mail.ru

A. Ogarkov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Email: vankovalskij@mail.ru

D. Shornikov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia; National Nuclear Research University MIFI (Moscow Engineering Physics Institute), Moscow, Russia

Email: vankovalskij@mail.ru

B. Tarasov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia; National Nuclear Research University MIFI (Moscow Engineering Physics Institute), Moscow, Russia

Email: vankovalskij@mail.ru

A. Konovalov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Email: vankovalskij@mail.ru

A. Shokod'ko

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

编辑信件的主要联系方式.
Email: vankovalskij@mail.ru

参考

  1. Wuchina, E. Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx and aHf(N) / E. Wuchina, M. Opeka, S. Causey, K. Buesking, J. Spain, A. Cull, J. Routbort, F. Guitierrez-Mora //j. Mater. Sci. 2004. V.39. №19. P.5939-5949.
  2. Dong, Sh. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage / Dong Sh., Chen X., Gu L., Zhou X., Xu H., Wang H., Liu Zh., Han P., Yao J., Wang L., Cui G., Chen L. // ACS Appl. Mater.Interfaces. 2011. V.3. №1. P.93-98. doi: 10.1021/am100951h.
  3. Bl‡b, U.W. Bulk titanium nitride ceramics-Significant enhancement of hardness by silicon nitride addition, nanostructuring and high pressure sintering / U.W. Bl‡b, T. Barsukova, M.R. Schwarz, A. K†hler, C. Schimpf, D. Rafaja, E.1. Kroke, U. Mˆhle, I.A. Petrusha //j. Eur. Ceram. Soc. 2015. V.35. №10. Р.2733-2744. doi: 10.1016/j.jeurceramsoc.2015.04.005
  4. Hollmer, T. Manufacturing methods for (U-Zr)N-fuels: student thesis / T. Hollmer. - Stockholm: AlbaNova University Centre. 2011. 80 p.
  5. Li, J.Y. Zirconium nitride (ZrN) fibers prepared by carbothermal reduction and nitridation of electrospun PVP /zirconium oxychloride composite fibers /j.Y. Li, Y. Sun, Y. Tan, F.M. Xu, X.L. Shi, N. Ren // Chem. Eng. J. 2008. V.144. №1. P.149-152.
  6. Xin, X. Photochemical synthesis of transition metal-stabilized uranium(VI) nitride complexes / Xin X., Douair I., Rajeshkumar T., Zhao Y., Wang S., Maron L., Zhu C. // Nature Communications. 2022. V.13(1). Art.3809.
  7. Turner, J. UN-UB2 composite fuel material; improved water tolerance with integral burnable absorber /j. Turner, J. Buckley, R.N. Worth, M. Salata-Barnett, M.J.J. Schmidt, T.J. Abram //j. Nucl. Mater. 2022. V.559. Art.153471.
  8. Zheng, L. Layer-structured Cr/CrxN coating via electroplating-based nitridation achieving high deuterium resistance as the hydrogen permeation barrier / Zheng L., Li H., Zhou J., Tian X., Zheng Z., Wang L., Wang X., Yan Y. //j. Advanc. Ceram. 2022. V.11(12). P.1944-1955.
  9. Кривов, М.П. Влияние структурно-фазового состояния нитридного ядерного топлива на ресурс ТВЭЛА / М.П. Кривов, Г.А. Киреев, А.В. Тенишев // Атомная энергия. 2019. Т.127. №1. С.25-29.
  10. Кинёв, Е.А. Методики материаловедческих исследований нитридного ядерного топлива / Е.А. Кинёв, А.В. Барыбин, В.Л. Панченко, В.А. Цыгвинцев // Вопр. атомн. науки и техники. Серия: Материаловедение и новые материалы. 2021. №3 (109). С.85-95.
  11. Solntsev, K.A. Oxidative constructing of thin-walled ceramics (OCTWC) / K.A. Solntsev, E.M. Shustorovich, Y.A. Buslaev // Dokl. Chem. 2001. V.378. №4-6. Р.143-149.
  12. Солнцев, К.А. Окислительное конструирование тонкостенной керамики (ОКТК) выше температуры плавления металла: получение оксидных волокон из волокон Al и его сплава / К.А. Солнцев, Е.М. Шусторович, А.С. Чернявский, И.В. Дуденков // ДАН. 2002. Т.385. №3. С.372-377.
  13. Кузнецов, К.Б. Структура и твердость керамики, полученной в процессе высокотемпературной нитридизации циркониевой фольги / К.Б. Кузнецов, К.А. Шашкеев, С.В. Шевцов, А.И. Огарков, Н.Н. Третьяков, М.П. Саприна, А.В. Костюченко, А.С. Чернявский, В.М. Иевлев, К.А. Солнцев // Неорган. матер. 2015. Т.51. №8. С.893-900. doi: 10.7868/S0002337X15080126
  14. Kuznetsov K.B., Shashkeev K.A., Shevtsov S.V., Ogarkov A.I., Tretyakov N.N., Saprina M.P., Kostyuchenko A.V., Chernyavskii A.S., Ievlev V.M., Solntsev K.A. Structure and hardness of ceramics produced through high-temperature nitridation of zirconium foil // Inorg. Mater. 2015. V.51. №8. P.820-827. https://doi.org/10.1134/S0020168515080129
  15. Sheldon, R.I. The U-Zr (uranium-zirconium) system / R.I. Sheldon, D.E. Peterson // Bull. Alloy Phase Diagrams. 1989. V.10. №2. P.165-171.
  16. Powder diffraction file. Alphabetical index inorganic compounds. - Pensilvania: ICPDS, 1997.
  17. Кузнецов, К.Б. Кинетика насыщения циркония азотом в процессе высокотемпературной нитридизации / К.Б. Кузнецов, И.А. Ковалев, В.Ю. Зуфман, А.И. Огарков, С.В. Шевцов, А.А. Ашмарин, А.С. Чернявский, К.А. Солнцев // Неорган. матер. 2016. Т.52. №6. С.609-611. doi: 10.7868/S0002337X16060075.
  18. Kuznetsov K.B., Kovalev I.A., Zufman V.Yu., Ogarkov A.I., Shevtsov S.V., Ashmarin A.A., Chernyavskii A.S., Solntsev K.A. Kinetics of zirconium saturation with nitrogen during high-temperature nitridation // Inorg. Mater. 2016. V.52. №6. P.558-560. doi: 10.1134/S0020168516060078.
  19. Kovalev, I.A.Compositional evolution of zirconium and niobium in the process of high-temperature nitridation of Zr-Nb alloys / I.A. Kovalev, G.P. Kochanov, L.O. L'vov, S.V. Shevtsov, S.V. Kannikin, A.N. Sitnikov, S.S. Strel'nikova, A.S. Chernyavskii, K.A. Solntsev // Mendeleev Communications. 2022. V.32. Is.4. P.498-500. https://doi.org/10.1016/j.mencom.2022.07.022.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##