Vodorodnoe okhrupchivanie trubnykh staley

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A review of literature data on the interaction of hydrogen with metallic materials is presented. The main damage processes such as high-temperature hydrogen corrosion and hydrogen embrittlement (HE) are reviewed. The most common mechanisms of HE are described. The well-known regularities and issues of the influence of the chemical composition, structure, hydrogen concentration, temperature and strain rate on the development of HE are generalized, and the results of our own studies of the effect of hydrogen on the mechanical properties of pipe steels are presented.

Sobre autores

D. Pumpyanskiy

Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia

Email: khatkevichvm@tmk-group.com

I. Pyshmintsev

LLC "TMK Scientific and Technical Center", Moscow, Russia

Email: khatkevichvm@tmk-group.com

V. Khatkevich

LLC "TMK Scientific and Technical Center", Moscow, Russia

Email: khatkevichvm@tmk-group.com

A. Khudnev

LLC "TMK Scientific and Technical Center", Moscow, Russia

Autor responsável pela correspondência
Email: khatkevichvm@tmk-group.com

Bibliografia

  1. Bhadeshia, H. Prevention of hydrogen embrittlement in steels / H. Bhadeshia // Mater. Sci. Metallurgy. 2016. V.56(1). P.24-36.
  2. Johnson, W. On some remarkable changes produced in iron and steel by the action of hydrogen and acids / W. Johnson // Proceedings of the Royal Soc. London. 1874. V.23. P.169-178.
  3. Мороз, Л.С. Водородная хрупкость металлов / Л.С. Мороз, Б.Б. Чечулин. - М.: Металлургия, 1967. 256 с.
  4. Колачев, Б.А. Водородная хрупкость металлов / Б.А. Колачев. - М.: Металлургия, 1985. 245 с.
  5. Гельд, П.В. Водород в металлах и сплавах / П.В. Гельд, Р.А. Рябов. - М.: Металлургия, 1974. 272 с.
  6. ASM: handbook. - Ohio: ASM Int. 2003. V13A, Corrosion: Fundamentals, Testing and Protection. 1135 p.
  7. Janiche, W. Werkstoffkunde Stahl / W. Janiche, W. Dahl, H.-F. Klarner, W. Pitsch, D. Schauwinhold, W. Schluter, H. Schmitz. - Dusseldorf: Springer-Verlag, 1985. Band 2. Anwendung. 398 s.
  8. Nelson, G.A. // Transactions of Amer. Soc. Mechan. Eng. 1959. V.73. P.205-219.
  9. Steels for hydrogen service at elevated temperatures and pressures in petroleum refineries and petrochemical plants // API Recommended Practice 941. 2016. 8th ed.
  10. Beachem, C.D. A new model for hydrogen assisted cracking (hydrogen embrittlement) / C.D. Beachem // Metall. Trans. 1972. V.3A. P.437-451.
  11. Pfeil, L.B. The effect of occluded hydrogen on the tensile strength of iron / L.B. Pfeil // Proceedings of the Royal Soc. of London. Series A. Containing Papers of a Mathematical and Physical Character. 1926. V.112(760). P.182-195.
  12. Djukic, M.B. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion / M.B. Djukic, G.M. Bakic, V.S. Zeravcic [et al.] // Eng. Fracture Mechanics. 2019. V.216. Art.106528.
  13. Graville, B.A. Effect of temperature and strain rate on hydrogen embrittlement of steel / B.A. Graville, R.G. Baker, F. Watkinson // British Welding J. 1967. V.14(6). June.
  14. Пумпянский, Д.А. Особенности деформационного упрочнения стали 09Г2С при повышенных температурах / Д.А. Пумпянский, И.Ю. Пышминцев, А.Н. Мальцева, В.М. Хаткевич, А.М. Арсенкин // Металлы. 2021. №5. С.102-108.
  15. D. A. Pumpyanskiy, I. Yu. Pyshmintcev, A. N. Maltseva, V. M. Khatkevich, A. M. Arsenkin, "Strain Hardening of 09G2S Steel at Elevated Temperatures".Russian Metallurgy (Metally). 2021. №9. P.1128-1134.
  16. Han, G. Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures / G. Han, J. He, S. Fukuyama, K. Yokogawa // Acta Materialia. 1998. V.46. №13. P.4559-4570.
  17. Hirayama, T. [S.n.] / T. Hirayama, M. Ogirima //j. Jpn. Inst. Met. 1970. V.34. P.507-510.
  18. Omura, T. Effect of surface hydrogen concentration on hydrogen embrittlement properties of stainless steels and Ni based alloys / T. Omura, J. Nakamura, H. Hirata, K. Jotoku, M. Ueyama, T. Osuki [et al.] // ISIJ Intern. 2016. V.56. P.405-412.
  19. Пумпянский, Д.А. Особенности фазовых превращений в сталях мартенситного класса для высокопрочных коррозионностойких труб нефтяного сортамента / Д.А. Пумпянский, И.Ю. Пышминцев, С.М. Битюков, Е.С. Алиева, А.А. Гусев, С.Б. Михайлов, М.Л. Лобанов // Металлург. 2021. №11. С.35-42.
  20. Briottet, L. Study of the hydrogen embrittlement sensitivity of an X4CrNiMo16.5.1 stainless steel and the associated electron beam weld / L. Briottet, S. Ringeval, S. Tiebaut [et al.] // Proc. ASME Pressure Vessels & Piping Conference (Boston, 2015.). - [S.l.]: PVP, 2015. Art.45283.
  21. Lianga, X.Z. Hydrogen embrittlement in super duplex stainless steels / X.Z. Lianga, G.-H. Zhao, M.F. Dodge, T.L. Lee [et al.] // Acta Materialia. 2019. https://dx.doi.org/10.2139/ssrn.3446899.
  22. Nanninga, N.E.Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments / N.E. Nanninga, Y.S. Levy, E.S. Drexler // Corrosion Science. 2012. V.59. P.1-9.
  23. Jewett, R.P. Hydrogen environment embrittlement of metals, prepared by rocketdyne, division of North American Rockwell, Canoga Park, CA for National Aeronautics and Space Administration Washington, DC / R.P. Jewett, R.J. Walter, W.T. Chandler, R.P. Frohmberg // NASA Contractor Report NASA CR-2163. 1973.
  24. Lam, P.S. Literature survey of gaseous hydrogen effects on the mechanical properties of carbon and low alloyed steels / P.S. Lam, R.L. Sindelar, T.M. Adams // ASME Pressure Vessels and Piping Division Conf. 2007. Paper 26730.
  25. Moody, N.R. Hydrogen effects on material behavior / N.R. Moody, A. W. Thompson [eds.] // Warrendale, PA. The Minerals, Metals, and Materials Soc. 1990. P.991-1002.
  26. Boukortt, H. Hydrogen embrittlement effect on the structural integrity of API 5L X52 steel pipeline / H. Boukortt // Intern. J. Hydrogen Energy. 2018. V.43. P.19615-19624.
  27. Xue, H.B. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking / H.B. Xue, Y.F. Cheng // Corrosion Science. 2011. V.53. P.1201-1208.
  28. Dong, C.F. Hydrogen-induced cracking and healing behavior of X70 steel / C.F. Dong, X.G. Li, Z.Y. Liu, Y.R. Zhang //j. Alloys and Compounds. 2009. V.484. №1-2. P.966-972.
  29. Dong, C.F. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking / C.F. Dong, Z.Y. Liu, X.G. Li, Y.F. Cheng // Intern. J. Hydrogen Energy. 2009. V.34. №24. P.9879-9884.
  30. Lam, P.S. Literature survey of gaseous hydrogen effects on the mechanical properties of carbon and low alloy steels / P.S. Lam, R.L. Sindelar, A.J. Duncan, T.M. Adams //j. Pressure Vessel Technol. 2009. V.131. №4. Art. 041408.
  31. Пумпянский, Д.А. Структура и свойства стали для производства высокопрочных труб нефтегазового сортамента в сероводородостойком исполнении / Д.А. Пумпянский, И.Ю. Пышминцев, А.Н. Мальцева, Д.П. Усков, М.А. Смирнов, А.М. Арсенкин // Металлург. 2022. №10. С.8-13.
  32. Пышминцев, И.Ю. Разработка коррозионно-стойких труб для сред, содержащих сероводород / И.Ю. Пышминцев, И.Н. Веселов, А.Г. Ширяев, Б.А. Ерехинский, В.И. Чернухин, А.Б. Арабей // Территория Нефтегаз. 2016. №7-8. С.62-71.
  33. Рыжков, М.А. Особенности фазовых и структурных превращений в рационально легированных сталях для производства высокопрочных труб, стойких к воздействию сред, содержащих сероводород: дис. … канд. техн. наук / Рыжков Максим Александрович; науч. рук. И.Ю. Пышминцев; УрФУ. - Екатеринбург, 2009. 206 с.
  34. ANSI/NACE-MR-0175-ISO-15156-2015. Petroleum, Petrochemical, and Natural Gas Industries: Material for Use in H2S Environments in Oil and Gas Production. - ANSI/NACE/ISO, 2015. 84 p.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies