Povyshenie tverdosti i iznosostoykosti tekhnicheskogo titana anodnoy elektrolitno-plazmennoy tsementatsiey

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The possibility of using the anodic electrolyte-plasma carburization technology in a non-toxic electrolyte to increase the microhardness and wear resistance of commercially pure titanium is considered. The morphostructure and roughness of the material surface after saturation were studied, the distribution of microhardness in the surface layer and the tribological behavior of the modified surface were studied. Wear resistance tests were carried out under dry friction conditions using tool alloy hardened steel as a counterbody. It has been established that electrolyte-plasma cementation in an aqueous electrolyte, containing ammonium chloride and glycerin, increases surface hardness by 3.5 times, up to 900 HV0.01, due to the formation of a diffusion layer. Tribological behavior is influenced by high-temperature oxidation of the surface, leading to the formation of an outer oxide layer, the formation of a modified layer and the titanium surface relief. The friction coefficient after treatment increases by 1.2 times, and mass wear decreases by 3.4 times compared to the untreated surface of titanium parts.

Авторлар туралы

I. Tambovskiy

Moscow State University of Technology STANKIN, Moscow, Russia; Kostroma State University, Kostroma, Russia

Email: ramstobiliti@gmail.com

S. Kusmanov

Kostroma State University, Kostroma, Russia

Email: akusmanov@yandex.ru

T. Mukhacheva

Moscow State University of Technology STANKIN, Moscow, Russia; Kostroma State University, Kostroma, Russia

Email: ramstobiliti@gmail.com

B. Krit

Moscow State University of Technology STANKIN, Moscow, Russia; Moscow Aviation Institute (National Research University), Moscow, Russia

Email: ramstobiliti@gmail.com

I. Suminov

Moscow State University of Technology STANKIN, Moscow, Russia

Email: ramstobiliti@gmail.com

R. Khmyrov

Moscow State University of Technology STANKIN, Moscow, Russia

Email: ramstobiliti@gmail.com

I. Palenov

Moscow State University of Technology STANKIN, Moscow, Russia

Email: ramstobiliti@gmail.com

R. Vdovichenko

Moscow State University of Technology STANKIN, Moscow, Russia

Email: ramstobiliti@gmail.com

V. Morozov

Moscow State University of Technology STANKIN, Moscow, Russia

Хат алмасуға жауапты Автор.
Email: ramstobiliti@gmail.com

Әдебиет тізімі

  1. Дробов, А.Н. Влияние ионно-плазменного азотирования на износостойкость и характер изменения шероховатости поверхности титановых сплавов ВТ1-0, ВТ6 и ОТ4-1 / А.Н. Дробов, М.Н. Босяков, И.Л. Поболь // Литье и металлургия. 2022. №2. С.78-83.
  2. Каталог продукции и услуг НПК "Титановые сплавы". - СПб.: НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей", 2019. 56 с.
  3. Гриценко, Б.П. Повышение износостойкости технически чистого титана ВТ1-0 и сплава ВТ6 / Б.П. Гриценко, Н.Н. Коваль, Ю.Ф. Иванов, К.В. Круковский, Н.В. Гирсова, А.Д. Тересов // Изв. Самар. науч. центра РАН. 2011. Т.13. №4(3). С.1009-1013.
  4. Спиридонов, М.А. Влияние цементации на структуру и свойства титанового сплава ВТ1-0 / М.А. Спиридонов, А.А. Куколев, Л.Е. Куц, Н.А. Вавилина // Сб. науч. статей 2-й Междунар. науч. конф. перспективных разработок молодых ученых: в 3 т. - Курск: [без изд.], 2021. С.177-180.
  5. Czerwinski, F. Thermochemical treatment of metals / F. Czerwinski // Heat Treatment - Conventional and Novel Applications. - L.: IntechOpen, 2012. P.422.
  6. Belkin, P.N. Plasma electrolytic carburising of metals and alloys / P.N. Belkin, S.A. Kusmanov // Surf. Eng. Appl. Electrochem. 2021. V.57. №1. P.19-50.
  7. Рамазанов, К.Н. Ионное азотирование титанового сплава ВТ6 в тлеющем разряде с эффектом полого катода / К.Н. Рамазанов, И.С. Рамазанов // Вест. УГАТУ. 2014. №2. С.41-46.
  8. Иванов, С.Г. Борирование титана ВТ1-0 из насыщающих обмазок / С.Г. Иванов, М.А. Гурьев, С.А. Иванова, И.А. Гармаева, А.М. Гурьев // Grand Altai Research & Education. 2016. №1. С.57-63.
  9. Aliofkhazraei, M. Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations / M. Aliofkhazraei, D.D. Macdonald, E. Matykina, E.V. Parfenov, V.S. Egorkin, J.A. Curran, S.C. Troughton, S.L. Sinebryukhov, Gnedenkov S.V., T. Lampke, F. Simchen, H.F. Nabavi // Appl. Surf. Sci. Advances. 2021. V.5. Art.100121.
  10. Kusmanov, S.A. Improving the wear resistance of VT22 titanium alloy by anodic plasma electrolytic boriding / S.A. Kusmanov, I.V. Tambovskii, I.A. Kusmanova, P.N. Belkin // Surf. Eng. Appl. Electrochem. 2021. V.57. №4. P.419-424.
  11. Kusmanov, S.A. Anode plasma electrolytic borocarburising of alpha + beta-titanium alloy / S.A. Kusmanov, I.V. Tambovskiy, S.A. Silkin, I.A. Kusmanova, P.N. Belkin // Surf.Interfaces. 2020. V.21. Art.100717.
  12. Kusmanov, S. Anodic plasma electrolytic nitrocarburising of Ti6Al4V alloy (SMT31) / S. Kusmanov, I. Kusmanova, I. Tambovskiy, P. Belkin, V. Parfenyuk // Surf. Eng. 2019. V.35. №3. P.199-204.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>