Vliyanie usloviy navedeniya deformatsii na strukturno-fazovoe sostoyanie i termomekhanicheskie kharakteristiki svoystv splava Ni49,5Ti48Hf2,5 s vysokotemperaturnym effektom pamyati formy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Complex studies of the properties of Ni49,5Ti48Hf2,5 alloy featuring high-temperature shape memory effect were carried out on samples made of 2,34 mm-thick strip after high-temperature annealing in vacuum (850 ºС, 1 h). Data on element, phase compositions and structure state was obtained. Results of studies of phase transition temperatures, mechanical and thermomechanical characteristics of the alloy are given. According to the results of studying the local phase composition of alloy samples, it was found that the main matrix of samples is formed by solid solution of Ti, Ni, Hf elements. When analyzing diffraction patterns, it was found that the main phase of samples is titanium nickelide in the low-temperature martensitic state TiNi (B19`) with a monoclinically distorted orthorhombic crystal lattice.  It was found that the best average values of the shape memory characteristics εSME = 4,4 % and ηSME = 53 % were obtained for alloy samples with a previously induced total deformation of eо = 11 % in the temperature range tD=(–5 ÷ 23) ºС and deformation rate ε ≈ 2,8·10–3 s–1. The average values of temperatures of the start and the end of the main form recovery are Аs SME = 133 ºС, Аf SME = 149 ºС. These thermomechanical characteristics are suitable for alloy selected to create safety devices such as devices of pushing type.

作者简介

N. Popov

Federal State Unitary Enterprise “Russian Federal Nuclear Center” – All-Russian Research Institute of Experimental Physics (FSUE “RFNC-VNIIEF”), Sarov, Russia

Email: nnpopov@vniief.ru

Dmitriy Presnyakov

Federal State Unitary Enterprise “Russian Federal Nuclear Center” – All-Russian Research Institute of Experimental Physics (FSUE “RFNC-VNIIEF”), Sarov, Russia

Email: nnpopov@vniief.ru

Evgeniy Grishin

Federal State Unitary Enterprise “Russian Federal Nuclear Center” – All-Russian Research Institute of Experimental Physics (FSUE “RFNC-VNIIEF”), Sarov, Russia

Email: nnpopov@vniief.ru

T. Sysoeva

Federal State Unitary Enterprise “Russian Federal Nuclear Center” – All-Russian Research Institute of Experimental Physics (FSUE “RFNC-VNIIEF”), Sarov, Russia

Email: nnpopov@vniief.ru

Snezhana Glukhareva

Federal State Unitary Enterprise “Russian Federal Nuclear Center” – All-Russian Research Institute of Experimental Physics (FSUE “RFNC-VNIIEF”), Sarov, Russia

Email: nnpopov@vniief.ru

Ivan Ryzhov

Federal State Unitary Enterprise “Russian Federal Nuclear Center” – All-Russian Research Institute of Experimental Physics (FSUE “RFNC-VNIIEF”), Sarov, Russia

Email: nnpopov@vniief.ru

Alla Kostyleva

Federal State Unitary Enterprise “Russian Federal Nuclear Center” – All-Russian Research Institute of Experimental Physics (FSUE “RFNC-VNIIEF”), Sarov, Russia

编辑信件的主要联系方式.
Email: nnpopov@vniief.ru

参考

  1. Попов, Н.Н. Влияние отжига на механические и термомеханические характеристики сплава Ti50Pd40Ni10 с высокотемпературным эффектом памяти формы, исследованные на заготовке в виде полосы / Н.Н. Попов, Д.В. Пресняков, В.Ф. Ларькин, Е.Н. Гришин, А.А. Костылева // Металлы. 2021. №4. С.28-40.
  2. Ma, J. High temperature shape memory alloys /j. Ma, I. Karaman, R. D. Noebe // Intern. Mater. Rev. 2010. V.55. №5. P.257-315.
  3. Zarinejad, M. The crystal chemistry of martensite in NiTiHf shape memory alloys / M. Zarinejad, Y. Liu, T. J. White // Intermetallics. 2008. №16. P.876-883.
  4. Tong, Y. Microstructure and martensitic transformation of Ti49Ni51-xHfx high temperature shape memory alloys / Y. Tong, F. Chen, B. Tian, L. Li, Y. Zheng // Mater. Lett. 2009. V.63. №21. P.1869-1871.
  5. Belbasi, Majid. Influence of chemical composition and melting process on hot rolling of NiTiHf shape memory alloy / Majid Belbasi, Mohammad T. Salehi //j. Mater. Eng. Performance. 2014. V.23. P.2368-2372.
  6. Karaca, H.E. NiTiHf-based shape memory alloys / H.E. Karaca, E. Acar, H. Tobe, S.M. Saghaian // Mater. Sci. Technol. 2014. V.30. P.1530-1544.
  7. Kim, Jeoung Han. Effects of Microstructure and deformation conditions on the hot formability of Ni-Ti-Hf shape / Jeoung Han Kim, Chan Hee Park, Seong Woong Kim, Jae Keun Hong, Chang-Seok Oh, Yeong Min Jeon, Kyong Min Kim, Jong Taek Yeom // Memory Alloys Buy Article: J. Nanosci. Nanotechnol. 2014. V.14. №12. P.9548-9553.
  8. Liu, J.L. Investigation of the phase equilibria in Ti-Ni-Hf system using diffusion triples and equilibrated alloys /j.L. Liu, L.L. Zhu, X.M. Huang [et al.] // CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry. 2017. №58. P.160-168.
  9. Han, X.L. Microstructures, martensitic transformation, and mechanical behavior of rapidly solidified Ti-Ni-Hf and Ti-Ni-Si shape memory alloy / X.L. Han, K.K. Song, L.M. Zhang [et al.] //j. Mater. Eng. Performance. 2018. V.27. №3. P.1005-1015.
  10. Babacanab, N. Full length article effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy / N. Babacanab, M. Bilala, C. Hayrettina, J. Liua, O. Benafanc, I. Karamana // Acta Materialia. 2018. V.157. P.228-244.
  11. Umale, T. The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys / T. Umale, D. Salas, B. Tomes [et al.] // Scripta Materialia. 2019. №161. P.78-83.
  12. Young, A.W. Microstructural and thermomechanical comparison of Ni-rich and Ni-lean NiTi-20 at.% Hf high temperature shape memory alloy wires / A.W. Young, R.W. Wheeler, N.A. Ley, O. Benafan, M.L. Young // Shape Memory and Superelasticity. 2019. V.5. P.397-406.
  13. Benafan, O. Viable low temperature shape memory alloys based on Ni-Ti-Hf formulations / O. Benafan, G.S. Bigelow, A. Garg, R.D. Noebe // Scripta Materialia. 2019. №164. P.115-120.
  14. Tong, Yunxiang. Recent development of TiNi-based shape memory alloys with high cycle stability and high transformation temperature / Yunxiang Tong, Aleksandr Shuitcev, Yufeng Zheng // Advanc. Eng. Mater. 2020. https://doi.org/10.1002/adem.201900496.
  15. Karelin, R.D. Effect of quasi-continuous equal-channel angular pressing on structure and properties of Ti-Ni shape memory alloys / R.D. Karelin, Yu. Khmelevskaya, V.S. Komarov, V.A. Andreev, M.M. Perkas, V.S. Yusupov, S.D. Prokoshkin //j. Mater. Eng. Performance. 2021. V.30. P.3096-3106.
  16. Коллеров, М.Ю. Сплавы системы Ti-Ni-Hf с высокотемпературным эффектом памяти формы / М.Ю. Коллеров, О.Н. Гвоздева, М.Л. Коцарь, З.М. Алекберов, Н.Н. Попов, В.С. Юсупов, Р.Д. Карелин // Титан. 2021. №1. С.34-38.
  17. Попов, Н.Н. Исследование свойств сплава 50Ti-40Pd-10Ni с высокотемпературным эффектом памяти формы / Н.Н. Попов, В.Ф. Ларькин, Д.В. Пресняков, Е.Н. Гришин, Т.И. Сысоева, Т.А. Морозова, Г.А Потемкин, А.А. Костылева // ФММ. 2018. Т.119. №3. С.303-316.
  18. Попов, Н.Н. Исследование свойств высокотемпературного сплава с памятью формы 49Ni-36Ti-15Hf в литом состоянии / Н.Н. Попов, Д.В. Пресняков, Е.Н. Гришин, Т.И. Сысоева, Т.А. Морозова, А.А. Костылева // Металлы. 2019. №2. С.43-53.
  19. Кулаичев, А.П. Универсальный программный статистический пакет STADIA (версия 7.0) для Windows / А.П. Кулаичев. - М.: НПО "Информатика и компьютеры", 2007.
  20. Кулаичев, А.П. Методы и средства комплексного анализа данных / А.П. Кулаичев. - М.: Форум: Инфра-М, 2006. 512 с.
  21. Степнов, М.Н. Статистические методы обработки результатов механических испытаний / М.Н. Степнов. - М.: Машиностроение, 1985. 232 с.
  22. Alphabetical Index Inorganic Phases. JCPDS Powder Diffraction File. - U.S.A. Newtown Square: International Center for Diffraction Data, 1989. 836 c.
  23. Горелик, С.С. Рентгенографический и электронографический анализ металлов / С.С. Горелик, Л.Н. Расторгуев, Ю.А. Скаков. - М.: Металлургиздат, 1970. 366 с.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##