THE ROLE OF SYMPATHICOTONIC REACTIVITY OF ORGANISM AND GROWTH FACTORS IN PATHOGENESIS OF SYNDROME OF POLYCYSTIC OVARY


如何引用文章

全文:

详细

The purpose of study. To explore input of vegetative nervous system, fatty tissue as endocrine organ and further inter-tissue interactions in pathogenesis of syndrome of polycystic ovary.The material and methods. The analysis of publication data concerning prevalence of syndrome of polycystic ovary in women with normal body mass and obesity and also about involvement of neural regulation, molecular genetic and biochemical mechanisms in development of syndrome of polycystic ovary. The results. The publication data is presented concerning effect of sympathic adrenal system on fatty tissue and ovary under syndrome of polycystic ovary. The characteristics of synthesis of growth factors are considered including their effect on development of insulin resistance resulting in subsequent hyperinsulinemia in female patients with the given syndrome.The conclusion. The syndrome of polycystic ovary is a wildly prevalent multi-factorial pathology conditioned by both genetic and environmental factors. The particular role in pathogenesis of this syndrome play alterations of vegetative regulation, carbohydrate metabolism and steroidogenesis. The review presents data concerning effect of totality of growth factors and sympathic innervation of development of clinical manifestations of the syndrome of polycystic ovary.

作者简介

D. Lukyanova

The I.M. Sechenov first Moscow state medical university of Minzdrav of Russia

119992, Moscow, Russian Federation

Tatyana Smolnova

The A.E. Evdokimov Moscow state medical stomatological university; The academician V.I. Kulakov research center of obstetrics, gynecology and perinatology of Minzdrav of Russia

Email: smoltat@list.ru
doctor of medical sciences, associate professor of the chair of reproductive medicine and surgery of the A.E. Evdokimov Moscow state medical stomatological university, 127473, Moscow, Russian Federation; senior researcher of the department of operative gynecology of the academician V.I. Kulakov research center of obstetrics, gynecology and perinatology, 119992, Moscow, Russian Federation 127473, Moscow, Russian Federation; 117997, Moscow, Russian Federation

参考

  1. Azziz R., Woods K.S., Reyna R., Key T.J., Knochenhauer E.S., Yildiz B.O. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin. Endocrinol. Metab. 2004; 89 (6): 2745-9.
  2. Asgharnia M., Mirblook F., Ahmad Soltani M. The prevalence of polycystic ovary syndrome (PCOS) in high school students in Rasht in 2009 according to NIH Criteria. Int. J. Fertil. Steril. 2011; 4 (4): 156-9.
  3. Norman R.J., Dewailly D., Legro R.S., Hickey T.E. Polycystic ovary syndrome. Lancet. 2007; 370 (9588): 685-97.
  4. March W.A., Moore V.M., Willson K.J., Phillips D.I., Norman R.J., Davies M.J. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum. Reprod. 2010; 25 (2): 544-51.
  5. Carmina E., Rosato F., Jannì A., Rizzo M., Longo R.A. Extensive clinical experience: relative prevalence of different androgen excess disorders in 950 women referred because of clinical hyperandrogenism. J. Clin. Endocrinol. Metab. 2006; 91 (1): 2-6.
  6. Goodman N.F., Cobin R.H., Futterweit W., Glueck J.S., Legro R.S., Carmina E. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society Disease State Clinical Review: Guide to the best practices in the evaluation and treatment of polycystic ovary syndrome - part 1. Endocr. Pract. 2015; 21 (11): 1291-300.
  7. Huang J., Ni R., Chen X., Huang L., Mo Y., Yang D. Metabolic abnormalities in adolescents with polycystic ovary syndrome in south China. Reprod. Biol. Endocrinol. 2010; 8: 142.
  8. Уварова Е.В. Возможности применения комбинированных оральных контрацептивов в пролонгированном режиме при лечении СПКЯ. Проблемы репродукции. 2006; (4): 73-5
  9. The Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004. 19 (1): 41-7.
  10. Wild R.A., Carmina E., Diamanti-Kandarakis E., Dokras A., Escobar-Morreale H.F., Futterweit W. et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 2010; 95 (5): 2038-49.
  11. Carmina E. Polycystic ovary syndrome: metabolic consequences and long-term management. Scand. J. Clin. Lab. Invest. Suppl. 2014; 244: 23-6.
  12. Carmina E. Obesity, adipokines and metabolic syndrome in polycystic ovary syndrome. Front. Horm. Res. 2013; 40: 40-50.
  13. Panidis I., Tziomalos K., Misichronis G., Papadakis E., Betsas G., Katsikis I. et al. Insulin resistance and endocrine characteristics of the different phenotypes of polycystic ovary syndrome: a prospective study. Hum. Reprod. 2012. 27 (2): 541-9.
  14. Greiner M., Paredes A., Araya V., Lara H.E. Role of stress and sympathetic innervation in the development of polycystic ovary syndrome. Endocrine. 2005; 28: 319-24.
  15. Mancia G., Bousquet P., Elghozi J.L., Esler M., Grassi G., Julius S. et al. The sympathetic nervous system and the metabolic syndrome. J. Hypertens. 2007; 25: 909-20.
  16. Mannerås L., Cajander S., Lönn M., Stener-Victorin E. Acupuncture and exercise restore adipose tissue expression of sympathetic markers and improve ovarian morphology in rats with dihydrotestosterone-induced PCOS. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009; 296 (4): R1124-31.
  17. Sverrisdottir Y.B., Mogren T., Kataoka J., Janson P.O., Stener-Victorin E. Is polycystic ovary syndrome associated with high sympathetic nerve activity and size at birth? Am. J. Physiol. Endocrinol. Metab. 2008; 294: E576-81.
  18. Manni L., Cajander S., Lundeberg T., Naylor A.S., Aloe L., Holmäng A. et al. Effect of exercise on ovarian morphology and expression of nerve growth factor and alpha (1)- and beta (2)-adrenergic receptors in rats with steroid-induced polycystic ovaries. J. Neuroendocrinol. 2005; 17 (12): 846-58.
  19. Ek I., Arner P., Ryden M., Holm C., Thorne A., Hoffstedt J. et al. A unique defect in the regulation of visceral fat cell lipolysis in the polycystic ovary syndrome as an early link to insulin resistance. Diabetes. 2002; 51: 484-92.
  20. Pérez-Bravo F., Echiburú B., Maliqueo M., Santos J.L., Sir-Petermann T. Tryptophan 64 - > arginine polymorphism of beta-3-adrenergic receptor in Chilean women with polycystic ovary syndrome. Clin. Endocrinol. (Oxf). 2005; 62 (2): 126-31.
  21. Zhang W., Mottillo E.P., Zhao J., Gartung A., VanHecke G.C., Lee J.F. Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity. J. Biol. Chem. 2014; 289 (46): 32 178-85.
  22. Mottillo E.P., Shen X.J., Granneman J.G. Вeta3-adrenergic receptor induction of adipocyte inflammation requires lipolytic activation of stress kinases p38 and JNK. Biochim. Biophys. Acta. 2010; 1801 (9): 1048-55.
  23. Victor V.M., Rovira-Llopis S., Bañuls C., Diaz-Morales N., Martinez de Marañon A., Rios-Navarro C. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase. PLoS One. 2016; 11 (3): e0151960.
  24. Chen L., Xu W.M., Zhang D. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome. Fertil. Steril. 2014; 102 (4): 1167-74.
  25. Højlund K. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan. Med. J. 2014; 61 (7): B4890.
  26. Rieusset J., Bouzakri K., Chevillotte E., Ricard N., Jacquet D., Bastard J.P. Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes. 2004; 53 (9): 2232-41.
  27. Deshpande R.R., Chang M.Y., Chapman J.C., Michael S.D. Alteration of cytokine production in follicular cystic ovaries induced in mice by neonatal estradiol injection. Am. J. Reprod. Immunol. 2000; 44 (2): 80-8.
  28. San Millán J.L., Cortón M., Villuendas G., Sancho J., Peral B., Escobar-Morreale H.F. Association of the polycystic ovary syndrome with genomic variants related to insulin resistance, type 2 diabetes mellitus, and obesity. J. Clin. Endocrinol. Metab. 2004; 89 (6): 2640-6.
  29. De Leo V., La Marca A., Cappelli V., Stendardi A., Focarelli R., Musacchio M.C. et al. Evaluation of the treatment with D-chiro-inositol on levels of oxidative stress in PCOS patients. Minerva Ginecol. 2012; 64 (6): 531-8.
  30. Genazzani A.D., Prati A., Santagni S., Ricchieri F., Chierchia E., Rattighieri E. Differential insulin response to myo-inositol administration in obese polycystic ovary syndrome patients. Gynecol. Endocrinol. 2012; 28 (12): 969-73.
  31. Cheang K., Baillargeon J.P., Essah P.A., Ostlund R.E. Jr., Apridonize T., Islam L. et al. Insulin-stimulated release of D-chiro-inositol-containing inositolphosphoglycan mediator correlates with insulin sensitivity in women with polycystic ovary syndrome. Metabolism. 2008; 57 (10): 1390-7.
  32. Chen M.J., Yang W.S., Chen C.L., Wu M.Y., Yang Y.S., Ho H.N. The relationship between anti-Mullerianhormone, androgen and insulin resistance on the number of antral follicles in women with polycystic ovary syndrome. Hum. Reprod. 2008; 23 (4): 952-7.
  33. Silfen M., Denburg M., Manibo A., Lobo R.A., Jaffe R., Ferin M. et al. Early endocrine, metabolic and sonographic characteristics of PCOS: comparison between nonobese and obese adolescents. J. Clin. Endocr. Metab. 2003; 88: 4682-8.
  34. Gonzаlez F. Inflammation in Polycystic Ovary Syndrome: Underpinning of insulin resistance and ovarian dysfunction. Steroids. 2012; 77 (4): 300-5.
  35. Repaci A., Gambineri A., Pasquali R. The role of lowgrade inflammation in the polycystic ovary syndrome. Mol. Cell Endocrinol. 2011; 335 (1): 30-41.
  36. Wang B., Hao M., Yang Q., Li J., Guo Y. Follicular fluid soluble receptor for advanced glycationendproducts (sRAGE): a potential protective role in polycystic ovary syndrome. J. Assist. Reprod. Genet. 2016; 33 (7): 959-65.
  37. Li L., Ryoo J.E., Lee K.J., Choi B.C., Baek K.H. Genetic variation in the Mcp-1 gene promoter associated with the risk of polycystic ovary syndrome. PLoS One. 2015; 10 (4): e0123045.
  38. Sverrisdottir Y.B., Mogren T., Kataoka J., Janson P.O., Stener-Victorin E. Is polycystic ovary syndrome associated with high sympathetic nerve activity and size at birth? Am. J. Physiol. Endocrinol. Metab. 2008; 294 (3): E576-81.
  39. Ortega H.H., Veiga-Lopez A., Sreedharan S., del Luján Velázquez M.M., Salvetti N.R., Padmanabhan V. Developmental Programming: Does Prenatal Steroid Excess Disrupt the Ovarian VEGF System in Sheep? Biol. Reprod. 2015; 93 (3):58.
  40. Tal R., Seifer D.B., Arici A. The emerging role of angiogenic factor dysregulation in the pathogenesis of polycystic ovarian syndrome. Semin. Reprod. Med. 2015; 33 (3): 195-207.
  41. Abd El Aal D.E., Mohamed S.A., Amine A.F., Meki A.R. Vascular endothelial growth factor and insulin-like growth factor-1 in polycystic ovary syndrome and their relation to ovarian blood flow. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005; 118 (2): 219-24.
  42. Artini P.G., Ruggiero M., ParisenToldin M.R., Monteleone P., Monti M., Cela V. et al. Vascular endothelial growth factor and its soluble receptor in patients with polycystic ovary syndrome undergoing IVF. Hum. Fertil. (Camb.). 2009; 12 (1): 40-4.
  43. Qu J., Che Y., Xu P., Xia Y., Wu X., Wang Y. The higher response of vascular endothelial growth factor and angiotensin-ii to human chorionic gonadotropin in women with polycystic ovary syndrome. Int. J. Fertil. Steril. 2015; 8 (4): 373-8.
  44. De Falco S. The discovery of placenta growth factor and its biological activity. Exp. Mol. Med. 2012; 44 (1): 1-9.
  45. Tal R., Seifer D.B., Grazi R.V., Malter H.E. Follicular fluid placental growth factor is increased in polycystic ovarian syndrome: correlation with ovarian stimulation. Reprod. Biol. Endocrinol. 2014; 12: 82.
  46. Cao Y., Chen H., Zhou L., Chiang M.K., Anand-Apte B., Weatherbee J.A. et al. Heterodimers of placenta growth factor/vascular endothelial growth factor. Endothelial activity, tumor cell expression, and high affinity binding to Flk-1/KDR. J. Biol. Chem. 1996; 271 (6): 3154-62.
  47. Friedman C.I., Seifer D.B., Kennard E.A., Arbogast L., Alak B., Danforth D.R. Elevated level of follicular fluid vascular endothelial growth factor is a marker of diminished pregnancy potential. Fertil. Steril. 1998; 70 (5): 836-9.
  48. Di Pietro M., Parborell F., Irusta G., Pascuali N., Bas D., Bianchi M.S. Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model. Endocrinology. 2015; 156 (4): 1453-63.
  49. Elmekkawi S.F., Elhosseiny A.S., Mansour G.M., Abbas A.A., Asaad A.M., Ali K.S. Effect of metformin therapy on serum interleukin-6 and interleukin-18 levels in patients with polycystic ovary syndrome. Nat. Sci. 2010; 8 (9): 23-6.
  50. Tan B.K., Adya R., Farhatullah S., Chen J., Lehnert H., Randeva H.S. Metformin treatment may increase omentin-1 levels in women with polycystic ovary syndrome. Diabetes. 2010; 59 (12): 3023-31.

版权所有 © Eco-Vector, 2017


 


##common.cookie##