Right heart status in patients with COVID-19: a literature review

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The COVID-19 pandemic has placed unprecedented strain on healthcare worldwide. Considering that the main pathophysiological processes causing the severe and extremely severe course of the disease are COVID-19-associated pneumonia and hypercoagulation, the hemodynamics of pulmonary circulation and the right heart was of particular concern. Echocardiography has become the main method for assessing the condition of the right heart in COVID-19 patients, owing to its availability and speed of the investigation. However, echocardiographic assessment of the right heart is challenging, and data in the available literature are conflicting.

The functioning of the right parts of the heart regarding normality and in conditions of COVID-19 infection is shown. The results of studies aimed at assessing the structural, hemodynamic, and functional parameters of the right heart during the acute course of the disease and in the long-term period — from a month to a year — were studied. Currently, there is no consensus on the effect of COVID-19 on the condition of the right side of the heart in the long term and, accordingly, further monitoring of patients who have had COVID-19, especially severe and extremely severe cases, is required.

作者简介

Anton Karasev

N.I. Pirogov Russian National Research Medical University; Clinical Hospital No. 52, Moscow

编辑信件的主要联系方式.
Email: akara95_2010@mail.ru
ORCID iD: 0000-0002-3863-6755
SPIN 代码: 2656-1420
俄罗斯联邦, Moscow; Moscow

Natalia Poteshkina

N.I. Pirogov Russian National Research Medical University; Clinical Hospital No. 52, Moscow

Email: nat-pa@yandex.ru
ORCID iD: 0000-0001-9803-2139
SPIN 代码: 2863-4840

MD, Dr. Sci. (Medicine), professor

俄罗斯联邦, Moscow; Moscow

Maryana Lysenko

N.I. Pirogov Russian National Research Medical University; Clinical Hospital No. 52, Moscow

Email: lysenkoma@zdrav.mos.ru
ORCID iD: 0000-0002-2636-2558
SPIN 代码: 3887-6250

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Moscow; Moscow

Natalia Krylova

N.I. Pirogov Russian National Research Medical University; Clinical Hospital No. 52, Moscow

Email: krylova_n@list.ru
ORCID iD: 0000-0003-0310-0771
SPIN 代码: 4867-9400

MD, Cand. Sci. (Medicine), associate professor

俄罗斯联邦, Moscow; Moscow

Anna Svanadze

N.I. Pirogov Russian National Research Medical University; Clinical Hospital No. 52, Moscow

Email: asvanadze@mail.ru
ORCID iD: 0000-0003-0566-663X
SPIN 代码: 5271-4528

MD, Cand. Sci. (Medicine), associate professor

俄罗斯联邦, Moscow; Moscow

Maria Maslova

N.I. Pirogov Russian National Research Medical University; Clinical Hospital No. 52, Moscow

Email: m.unoemezzo@gmail.com
ORCID iD: 0000-0002-3687-2412
SPIN 代码: 6993-0920

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow; Moscow

Irina Beloglazova

N.I. Pirogov Russian National Research Medical University; Clinical Hospital No. 52, Moscow

Email: beloglazova.irina@gmail.com
ORCID iD: 0000-0002-2266-1497
SPIN 代码: 5339-8420

MD, Cand. Sci. (Medicine), associate professor

俄罗斯联邦, Moscow; Moscow

参考

  1. Data.who.int [Internet]. WHO Coronavirus (COVID-19) dashboard > Deaths [Dashboard] [cited 2023 March 01]. Available from: https://data.who.int/dashboards/covid19/deaths
  2. Narota A, Puri G, Singh V, et al. COVID-19 and ARDS: update on preventive and therapeutic venues. Curr Mol Med. 2022;22(4): 312–324. doi: 10.2174/1566524021666210408103921
  3. Khatri A, Wallach F. Coronavirus disease 2019 (Covid-19) presenting as purulent fulminant myopericarditis and cardiac tamponade: a case report and literature. Heart Lung. 2020;49(6):858–863. doi: 10.1016/j.hrtlng.2020.06.003
  4. Azevedo RB, Botelho BG, Hollanda JVG, et al. Covid-19 and the cardiovascular system: a comprehensive review. J Hum Hypertens. 2021;35(1):4–11. doi: 10.1038/s41371-020-0387-4
  5. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819–824. doi: 10.1001/jamacardio.2020.1096
  6. Pietsch H, Escher F, Aleshcheva G, et al. Proof of SARS-CoV-2 genomes in endomyocardial biopsy with latency after acute infection. Int J Infect Dis. 2021;102:70–72. doi: 10.1016/j.ijid.2020.10.012
  7. Hasanvand A. COVID-19 and the role of cytokines in this disease. Inflammopharmacology. 2022;30(3):789–798. doi: 10.1007/s10787-022-00992-2
  8. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. Corrected and republished from: Lancet. 2020;395(10229):1038. doi: 10.1016/S0140-6736(20)30566-3
  9. Kichloo A, Dettloff K, Aljadah M, et al. COVID-19 and hypercoagulability: a review. Clin Appl Thromb Hemost. 2020;26:1076029620962853. doi: 10.1177/1076029620962853
  10. Mitchell WB. Thromboinflammation in COVID-19 acute lung injury. Paediatr Respir Rev. 2020;35:20–24. doi: 10.1016/j.prrv.2020.06.004
  11. Manolis AS, Manolis TA, Manolis AA, et al. COVID-19 infection: viral macro- and micro-vascular coagulopathy and thromboembolism/prophylactic and therapeutic management. J Cardiovasc Pharmacol Ther. 2021;26(1):12–24. doi: 10.1177/1074248420958973
  12. Zhao YH, Zhao L, Yang XC, Wang P. Cardiovascular complications of SARS-CoV-2 infection (COVID-19): a systematic review and meta-analysis. Rev Cardiovasc Med. 2021;22(1): 159–165. doi: 10.31083/j.rcm.2021.01.238
  13. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020;5(7):831–840. doi: 10.1001/jamacardio.2020.1286
  14. Suh YJ, Hong H, Ohana M, et al. Pulmonary embolism and deep vein thrombosis in COVID-19: a systematic review and meta-analysis. Radiology. 2021;298(2):E70–E80. doi: 10.1148/radiol.2020203557
  15. Prasitlumkum N, Chokesuwattanaskul R, Thongprayoon C, et al. Incidence of myocardial injury in COVID-19-infected patients: a systematic review and meta-analysis. Diseases. 2020;8(4):40. doi: 10.3390/diseases8040040
  16. Kamath S, Gomah MT, Stepman G, et al. COVID-19-associated acute myocarditis: risk factors, clinical outcomes, and implications for early detection and management. Cureus. 2023;15(9):e44617. doi: 10.7759/cureus.44617
  17. Shah RM, Shah M, Shah S, et al. Takotsubo syndrome and COVID-19: associations and implications. Curr Probl Cardiol. 2021;46(3):100763. doi: 10.1016/j.cpcardiol.2020.100763
  18. John K, Lal A, Sharma N, et al. Presentation and outcome of myocardial infarction with non-obstructive coronary arteries in coronavirus disease 2019. World J Crit Care Med. 2022;11(3): 129–138. doi: 10.5492/wjccm.v11.i3.129
  19. Capotosto L, Nguyen BL, Ciardi MR, et al. Heart, COVID-19, and echocardiography. Echocardiography. 2020;37(9):1454–1464. doi: 10.1111/echo.14834
  20. Vonk Noordegraaf A, Chin KM, Haddad F, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019;53(1):1801900. doi: 10.1183/13993003.01900-2018
  21. Konstam MA, Kiernan MS, Bernstein D, et al. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation. 2018;137(20):e578–e622. doi: 10.1161/CIR.0000000000000560
  22. Persichini R, Lai C, Teboul JL, et al. Venous return and mean systemic filling pressure: physiology and clinical applications. Crit Care. 2022;26(1):150. doi: 10.1186/s13054-022-04024-x
  23. Chemla D, Castelain V, Zhu K, et al. Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension. Chest. 2013;143(5):1343–1350. doi: 10.1378/chest.12-1880
  24. Islamova MR, Lazarev PV, Safarova AF, Kobalava ZhD. The value of right ventricular dysfunction and right ventricular — pulmonary artery coupling in chronic heart failure: the role of echocardiography. Kardiologiia. 2018;58(5):82–90. EDN: XNJCKD doi: 10.18087/cardio.2018.5.10124
  25. Sanz J, Sánchez-Quintana D, Bossone E, et al. Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(12):1463–1482. doi: 10.1016/j.jacc.2018.12.076
  26. Sylvester JT, Shimoda LA, Aaronson PI, et al. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92(1):367–520. Corrected and republished from: Physiol Rev. 2014;94(3):989. doi: 10.1152/physrev.00041.2010
  27. Zaidi A, Knight DS, Augustine DX, et al. Echocardiographic assessment of the right heart in adults: a practical guideline from the British Society of Echocardiography. Echo Res Pract. 2020;7(1):G19-G41. doi: 10.1530/ERP-19-0051
  28. Pastore MC, De Carli G, Mandoli GE, et al. The prognostic role of speckle tracking echocardiography in clinical practice: evidence and reference values from the literature. Heart Fail Rev. 2021;26(6):1371–1381. doi: 10.1007/s10741-020-09945-9
  29. Bonizzoli M, Cipani S, Lazzeri C, et al. Speckle tracking echocardiography and right ventricle dysfunction in acute respiratory distress syndrome a pilot study. Echocardiography. 2018;35(12):1982–1987. doi: 10.1111/echo.14153
  30. Golukhova EZ, Slivneva IV, Rybka MM, et al. Right ventricular systolic dysfunction as a predictor of adverse outcome in patients with COVID-19. Kardiologiia. 2020;60(11):16–29. EDN: JZCOSW doi: 10.18087/cardio.2020.11.n1303
  31. Repessé X, Vieillard-Baron A. Right heart function during acute respiratory distress syndrome. Ann Transl Med. 2017;5(14):295. doi: 10.21037/atm.2017.06.66
  32. McCall PJ, Willder JM, Stanley BL, et al. Right ventricular dysfunction in patients with COVID-19 pneumonitis whose lungs are mechanically ventilated: a multicentre prospective cohort study. Anaesthesia. 2022;77(7):772–784. doi: 10.1111/anae.15745
  33. Liu Y, Xie J, Gao P, et al. Swollen heart in COVID-19 patients who progress to critical illness: a perspective from echo-cardiologists. ESC Heart Fail. 2020;7(6):3621–3632. doi: 10.1002/ehf2.12873
  34. Huang S, Vignon P, Mekontso-Dessap A, et al. Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study). Intensive Care Med. 2022;48(6):667–678. doi: 10.1007/s00134-022-06685-2
  35. Dweck MR, Bularga A, Hahn RT, et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging. 2020;21(9):949–958. doi: 10.1093/ehjci/jeaa178
  36. Kovtyukh IV, Gendlin GE, Nikitin IG. Dynamics of echocardiographic parameters in patients with severe COVID-19 during hospitalization. Russian Medicine. 2022;28:47–55. EDN: WLALPU doi: 10.17816/medjrf108904
  37. Arutyunov GP, Tarlovskaya EI, Arutyunov AG, et al. Comparative analysis of echocardiographic and electrocardiographic data of survivors and deceased patients with COVID-19 (sub-analysis of the international register “Dynamics analysis of comorbidities in SARS-CoV-2 survivors”). Russian Journal of Cardiology. 2022;27(3):9–17. EDN: IGGGMR doi: 10.15829/1560-4071-2022-4855
  38. Soulat-Dufour L, Fauvel C, Weizman O, et al. Prognostic value of right ventricular dilatation in patients with COVID-19: a multicentre study. Eur Heart J Cardiovasc Imaging. 2022;23(4): 569–577. doi: 10.1093/ehjci/jeab067
  39. Kovtyukh IV, Gendlin GE, Nikitin IG, et al. The value of indicators characterizing the state of the cardiovascular system in assessing the hospital prognosis of COVID-19 patients. Kardiologiia. 2021;61(10):26–35. EDN: JEKZPN doi: 10.18087/cardio.2021.10.n1553
  40. Golukhova EZ, Slivneva IV, Rybka MM, et al. Structural and functional сhanges of the right ventricle in COVID-19 according to echocardiography. Creative Cardiology. 2020;14(3):206–223. EDN: COFRGV doi: 10.24022/1997-3187-2020-14-3-206-223
  41. Li Y, Li H, Zhu S, et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19. JACC Cardiovasc Imaging. 2020;13(11):2287–2299. doi: 10.1016/j.jcmg.2020.04.014
  42. Gibson LE, Fenza RD, Lang M, et al. Right ventricular strain is common in intubated COVID-19 patients and does not reflect severity of respiratory illness. J Intensive Care Med. 2021;36(8):900–909. doi: 10.1177/08850666211006335
  43. Arutyunov GP, Tarlovskaya EI, Arutyunov AG, et al. Clinical features of post-COVID-19 period. Results of the international register “Dynamic analysis of comorbidities in SARS-CoV-2 survivors (AKTIV SARS-CoV-2)”. Data from 6-month follow-up. Russian Journal of Cardiology. 2021;26(10):86–98. EDN: ZAPSJL doi: 10.15829/1560-4071-2021-4708
  44. Arutyunov GP, Tarlovskaya EI, Arutyunov AG, et al. ACTIV SARS-CoV-2 registry (Analysis of Chronic Non-infectious Diseases Dynamics after COVID-19 Infection in Adult Patients). Assessment of impact of combined original comorbid diseases in patients with COVID-19 on the prognosis. Terapevticheskii arkhiv. 2022;94(1): 32–47. EDN: WQMDNC doi: 10.26442/00403660.2022.01.201320
  45. Kobelev E, Bergen TA, Tarkova AR, et al. COVID-19 as a cause of chronic pulmonary hypertension: pathophysiological rationale and potential of instrumental investigations. Cardiovascular Therapy and Prevention. 2021;20(5):126–133. EDN: IDVYAF doi: 10.15829/1728-8800-2021-2844
  46. Taha HA, Elshafey BI, Abdullah TM, Salem HA. Study of pulmonary hypertension in post-COVID-19 patients by transthoracic echocardiography. The Egyptian Journal of Bronchology. 2023;17(1):27. doi: 10.1186/s43168-023-00201-w
  47. Shirokov NE, Yaroslavskaya EI, Krinochkin DV, Osokina NA. Hidden systolic dysfunction of the right ventricle in patients with increased pulmonary vascular resistance 3 months after COVID-19 pneumonia. Kardiologiia. 2022;62(3):16–20. EDN: FBRMSM doi: 10.18087//cardio.2022.3.n1743
  48. Ozer PK, Govdeli EA, Baykiz D, et al. Impairment of right ventricular longitudinal strain associated with severity of pneumonia in patients recovered from COVID-19. Int J Cardiovasc Imaging. 2021;37(8):2387–2397. doi: 10.1007/s10554-021-02214-2
  49. Flores R, Pires O, Alves J, Pereira VH. An echocardiographic insight into post-COVID-19 symptoms. Cureus. 2023;15(4):e38039. doi: 10.7759/cureus.38039
  50. Yaroslavskaya EI, Krinochkin DV, Shirokov NE, et al. Comparison of clinical and echocardiographic parameters of patients with COVID-19 pneumonia three months and one year after discharge. Kardiologiia. 2022;62(1):13–23. EDN: FEAPJL doi: 10.18087/cardio.2022.1.n1859
  51. Wolters AEP, Wolters AJP, van Kraaij TDA, Kietselaer BLJH. Echocardiographic estimation of pulmonary hypertension in COVID-19 patients. Neth Heart J. 2022;30(11):510–518. doi: 10.1007/s12471-022-01702-x
  52. Kersten J, Schellenberg J, Jerg A, et al. Strain echocardiography in acute COVID-19 and post-COVID syndrome: more than just a snapshot. Biomedicines. 2023;11(4):1236. doi: 10.3390/biomedicines11041236
  53. Young KA, Krishna H, Jain V, et al. Serial left and right ventricular strain analysis in patients recovered from COVID-19. J Am Soc Echocardiogr. 2022;35(10):1055–1063. doi: 10.1016/j.echo.2022.06.007
  54. Lysenko MA, Poteshkina NG, Karasev AA, et al. Right heart in patients after COVID-19-associated pneumonia: long-term results. The Journal of General Medicine. 2023;(2):97–105. EDN: SKUXFU doi: 10.24412/2071-5315-2023-12885
  55. Sonsoz MR, Guven G, Yildiz U, et al. Right atrial reservoir strain and right ventricular strain improves in patients recovered from hospitalisation for non-severe COVID-19. Acta Cardiol. 2023;78(4):400–408. doi: 10.1080/00015385.2022.2082734

版权所有 © Eco-Vector, 2024


 


##common.cookie##