Current insights into the role of miRNA-125 in cardiovascular disease: potential biological markers and therapeutic targets

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Recently, miRNAs are being used as diagnostic markers for various pathological conditions. This review analyzed the main studies devoted to the role of miRNA-125 in the development of cardiovascular diseases. Members of the miRNA-125 family are involved in cell differentiation, proliferation, and apoptosis by targeting mRNAs associated with these cellular processes. This miRNA can enhance or inhibit pathological processes such as oncogenesis, muscle abnormalities, neurological disorders, and others. Members of the miRNA-125 family also influence the development and function of immune cells and are involved in immunological defense. Research shows that the miRNA-125 family is associated with cardiac development. They also play an important role in pathophysiological conditions of the cardiovascular system. However, the same miRNA-125 family members play different roles in different pathological processes. For example, miRNA-125b overexpression in cardiomyocytes can inhibit their apoptosis and inflammatory response. However, miRNA-125b is also a regulator of cardiac fibrosis; its overexpression in cardiac fibroblasts can enhance their proliferation. Therefore, in pathological conditions, miRNA-125b excess aggravates myocardial fibrosis and remodeling, destroys the original morphological structure of the heart, disrupts neovascularization processes, and aggravates apoptosis of cardiomyocytes in the damaged area. Thus, to avoid adverse reactions, the optimal dose and timing of therapeutic intervention using members of the miRNA-125 family, their inhibitors, and mimetics must be carefully determined. An expanded and accurate understanding of miRNA-125 functions in gene regulatory networks associated with cardiovascular pathology will enable the development of novel and innovative therapeutic strategies.

作者简介

Amina Alieva

N.I. Pirogov Russian National Research Medical University

编辑信件的主要联系方式.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN 代码: 2749-6427

MD, cand. sci. (med.), associate professor

俄罗斯联邦, 1 Ostrovityanova street, 117997 Moscow

Natalia Teplova

N.I. Pirogov Russian National Research Medical University

Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680
SPIN 代码: 9056-1948

MD, dr. sci. (med.), professor

俄罗斯联邦, 1 Ostrovityanova street, 117997 Moscow,

Elena Reznik

N.I. Pirogov Russian National Research Medical University

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN 代码: 3494-9080
Researcher ID: N-6856-2016

MD, dr. sci. (med.), professor

俄罗斯联邦, 1 Ostrovityanova street, 117997 Moscow,

Irina Baikova

N.I. Pirogov Russian National Research Medical University

Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN 代码: 3054-8884

MD, cand. sci. (med.), associate professor

俄罗斯联邦, 1, Ostrovityanova st., Moscow, 117997

Madina Akhmedova

AKFA Medline Clinic

Email: drmadina@yandex.ru

MD, cand. sci. (med.)

乌兹别克斯坦, Tashkent

Alexey Butenko

Scientific-Clinical Center N 2 of the Russian Research Center for Surgery named after Academician B.V. Petrovsky

Email: callcenter@ckbran.ru
ORCID iD: 0000-0003-4390-9276

MD, dr. sci. (med.), professor

俄罗斯联邦, Moscow

Bela Balagova

National Medical Research Center for Psychiatry and Narcology named after V.P. Serbsky

Email: 3088919@mail.ru
ORCID iD: 0009-0009-4556-1534

intern

俄罗斯联邦, Moscow

Anna Modestova

N.I. Pirogov Russian National Research Medical University

Email: a.modestowa@yandex.ru
ORCID iD: 0000-0002-7980-5500

MD, cand. sci. (med.), associate professor

俄罗斯联邦, 1 Ostrovityanova street, 117997 Moscow

Irina Kotikova

N.I. Pirogov Russian National Research Medical University

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN 代码: 1423-7300

student

俄罗斯联邦, 1 Ostrovityanova street, 117997 Moscow

Ramiz Valiev

The Loginov Moscow Clinical Scientific Center

Email: Radiosurgery@bk.ru
ORCID iD: 0000-0003-1613-3716
SPIN 代码: 2855-2867

MD, cand. sci. (med.)

俄罗斯联邦, Moscow

Igor Nikitin

N.I. Pirogov Russian National Research Medical University

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN 代码: 3595-1990

MD, dr. sci. (med.), professor

俄罗斯联邦, 1 Ostrovityanova street, 117997 Moscow

参考

  1. Mensah G, Roth G, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol. 2019;74(20):2529–2532. doi: 10.1016/j.jacc.2019.10.009
  2. Alieva AM, Reznik EV, Hasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. (In Russ). doi: 10.20514/2226-6704-2018-8-5-333-345
  3. Kozhevnikova MV, Belenkov YuN. Biomarkers in heart failure: current and future. Kardiologiia. 2021;61(5):4–16. (In Russ). doi: 10.18087/cardio.2021.5.n1530
  4. Alieva AM, Almazova II, Pinchuk TV, et al. Fractalkin and cardiovascular disease. Consilium Medicum. 2020;22(5):83–86. (In Russ). doi: 10.26442/20751753.2020.5.200186
  5. Aliyeva AM, Baykova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskii Arkhiv. 2019;91(9):145–149. (In Russ). doi: 10.26442/00403660.2019.09.000226
  6. Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ). doi: 10.26442/20751753.2021.10.201113
  7. Song Z, Gao R, Yan B. Potential roles of microRNA-1 and microRNA-133 in cardiovascular disease. Rev Cardiovasc Med. 2020;21(1):57–64. doi: 10.31083/j.rcm.2020.01.577
  8. Kalayinia S, Arjmand F, Maleki M, et al. MicroRNAs: roles in cardiovascular development and disease. Cardiovasc Pathol. 2021;50:107296. doi: 10.1016/j.carpath.2020.107296
  9. Romakina VV, Zhirov IV, Nasonova SN, et al. MicroRNAs as biomarkers of cardiovascular diseases. Kardiologiia. 2018;58(1): 66–71. (In Russ). doi: 10.18087/cardio.2018.1.1008
  10. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microRNA and heart failure. Therapy. 2022;8(1):60–70. (In Russ). doi: 10.18565/therapy.2022.1.60-70
  11. Wang Y, Tan J, Wang L, et al. MiR-125 family in cardiovascular and cerebrovascular diseases. Front Cell Dev Biol. 2021;9:799049. doi: 10.3389/fcell.2021.799049
  12. Kong AS, Lai KS, Lim SE, et al. MiRNA in ischemic heart disease and its potential as biomarkers: a comprehensive review. Int J Mol Sci. 2022;23(16):9001. doi: 10.3390/ijms23169001
  13. Vegter E, van der Meer P, de Windt LJ, et al. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18(5):457–468. doi: 10.1002/ejhf.495
  14. Rodriguez A, Griffiths-Jones S, Ashurst J, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14(10A):1902–1910. doi: 10.1101/gr.2722704
  15. Siasos G, Bletsa E, Stampouloglou PK, et al. MicroRNAs in cardiovascular disease. Hellenic J Cardiol. 2020;61(3):165–173. doi: 10.1016/j.hjc.2020.03.003
  16. Nader J, Metzinger L, Maitrias P, et al. Aortic valve calcification in the era of non-coding RNAs: the revolution to come in aortic stenosis management? Noncoding RNA Res. 2020;5(2):41–47. doi: 10.1016/j.ncrna.2020.02.005
  17. Bousquet M, Nguyen D, Chen C, et al. MicroRNA-125b transforms myeloid cell lines by repressing multiple mRNA. Haematologica. 2012;97(11):1713–1721. doi: 10.3324/haematol.2011.061515
  18. Wang J, Wang Z, Li G. MicroRNA-125 in immunity and cancer. Cancer Lett. 2019;454:134–145. doi: 10.1016/j.canlet.2019.04.015
  19. Li G, So AV, Sookram R, et al. Epigenetic silencing of miR-125b is required for normal B-cell development. Blood. 2018;131(17): 1920–1930. doi: 10.1182/blood-2018-01-824540
  20. Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol. 2016;16(5):279–294. doi: 10.1038/nri.2016.40
  21. Chen CY, Lee DD, Choong OK, et al. Cardiac-specific microRNA-125b deficiency induces perinatal death and cardiac hypertrophy. Sci Rep. 2021;11(1):2377. doi: 10.1038/s41598-021-81700-y
  22. Deng S, Zhang Y, Xu C, et al. MicroRNA-125b-2 overexpression represses ectodermal differentiation of mouse embryonic stem cells. Int J Mol Med. 2015;36(2):355–362. doi: 10.3892/ijmm.2015.2238
  23. Grodecka-Szwajkiewicz D, Ulanczyk Z, Zagrodnik E, et al. Differential secretion of angiopoietic factors and expression of microRNA in umbilical cord blood from healthy appropriate-for-gestational-age preterm and term newborns-in search of biomarkers of angiogenesis-related processes in preterm birth. Int J Mol Sci. 2020;21(4):1305. doi: 10.3390/ijms21041305
  24. Wong SS, Ritner C, Ramachandran S, et al. MiR-125b promotes early germ layer specification through Lin28/let-7d and preferential differentiation of mesoderm in human embryonic stem cells. PLoS One. 2012;7(4):e36121. doi: 10.1371/journal.pone.0036121
  25. Che P, Liu J, Shan Z, et al. MiR-125a-5p impairs endothelial cell angiogenesis in aging mice via RTEF-1 downregulation. Aging Cell. 2014;13(5):926–934. doi: 10.1111/acel.12252
  26. Cheng NL, Chen X, Kim J, et al. MicroRNA-125b modulates inflammatory chemokine CCL4 expression in immune cells and its reduction causes CCL4 increase with age. Aging Cell. 2015;14(2): 200–208. doi: 10.1111/acel.12294
  27. Xu CR, Fang QJ. Inhibiting glucose metabolism by miR-34a and miR-125b protects against hyperglycemia-induced cardiomyocyte cell death. Arq Bras Cardiol. 2021;116(3):415–422. doi: 10.36660/abc.20190529
  28. Sergienko IV, Ansheles AA. Pathogenesis, diagnosis and treatment of atherosclerosis: practical aspects. Russian Cardiology Bulletin. 2021;16(1):64–72. (In Russ). doi: 10.17116/Cardiobulletin20211601164
  29. Maitrias P, Metzinger-Le Meuth V, Massy Z, et al. MicroRNA deregulation in symptomatic carotid plaque. J Vasc Surg. 2015;62(5):1245–1250. doi: 10.1016/j.jvs.2015.06.136
  30. Lu JB, Yao XX, Xiu JC, Hu YW. MicroRNA-125b-5p attenuates lipopolysaccharide-induced monocyte chemoattractant protein-1 production by targeting inhibiting LACTB in THP-1 macrophages. Arch Biochem Biophys. 2016;590:64–71. doi: 10.1016/j.abb.2015.11.007
  31. Zhaolin Z, Jiaojiao C, Peng W, et al. OxLDL induces vascular endothelial cell pyroptosis through miR-125a-5p/TET2 pathway. J Cell Physiol. 2019;234(5):7475–7491. doi: 10.1002/jcp.27509
  32. Wen P, Cao H, Fang L, et al. miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smooth muscle cells in a high-phosphate environment. Exp Cell Res. 2014;322(2): 302–312. doi: 10.1016/j.yexcr.2014.01.025
  33. Cao C, Zhang H, Zhao L, et al. MiR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells proliferation induced by homocysteine. Exp Cell Res. 2016;347(1):95–104. doi: 10.1016/j.yexcr.2016.07.007
  34. Wang X, Chen S, Gao Y, et al. MicroRNA-125b inhibits the proliferation of vascular smooth muscle cells induced by platelet-derived growth factor BB. Exp Ther Med. 2021;22(2):791. doi: 10.3892/etm.2021.10223
  35. Gareri C, Iaconetti C, Sorrentino S, et al. MiR-125a-5p modulates phenotypic switch of vascular smooth muscle cells by targeting ETS-1. J Mol Biol. 2017;429(12):1817–1828. doi: 10.1016/j.jmb.2017.05.008
  36. Zhou H, Lin S, Hu Y, et al. MiR-125a-5p and miR-7 inhibits the proliferation, migration and invasion of vascular smooth muscle cell by targeting EGFR. Mol Med Rep. 2021;24(4):708. doi: 10.3892/mmr.2021.12347
  37. Zheng X, Wu Z, Xu K, et al. Interfering histone deacetylase 4 inhibits the proliferation of vascular smooth muscle cells via regulating MEG3/miR-125a-5p/IRF1. Cell Adh Migr. 2019;13(1): 41–49. doi: 10.1080/19336918.2018.1506653
  38. Ye D, Lou GN, Li AC, et al. MicroRNA-125a-mediated regulation of the mevalonate signaling pathway contributes to high glucose-induced proliferation and migration of vascular smooth muscle cells. Mol Med Rep. 2020;22(1):165–174. doi: 10.3892/mmr.2020.11077
  39. Vigili de Kreutzenberg S, Giannella A, Ceolotto G, et al. A miR-125/Sirtuin-7 pathway drives the pro-calcific potential of myeloid cells in diabetic vascular disease. Diabetologia. 2022;65(9):1555–1568. doi: 10.1007/s00125-022-05733-2
  40. Ding X, Ge P, Liu Z, et al. Interaction between microRNA expression and classical risk factors in the risk of coronary heart disease. Sci Rep. 2015;5:14925. doi: 10.1038/srep14925
  41. Jia K, Shi P, Han X, et al. Diagnostic value of miR-30d-5p and miR-125b-5p in acute myocardial infarction. Mol Med Rep. 2016;14(1):184–194. doi: 10.3892/mmr.2016.5246
  42. Bayoumi AS, Park KM, Wang Y, et al. A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. J Mol Cell Cardiol. 2018;114:72–82. doi: 10.1016/j.yjmcc.2017.11.003
  43. Xiaochuan B, Qianfeng J, Min X, Xiao L. RASSF1 promotes cardiomyocyte apoptosis after acute myocardial infarction and is regulated by miR-125b. J Cell Biochem. 2020;121(1):489–496. doi: 10.1002/jcb.29236
  44. Dufeys C, Daskalopoulos EP, Castanares-Zapatero D, et al. AMPKα1 deletion in myofibroblasts exacerbates post-myocardial infarction fibrosis by a connexin 43 mechanism. Basic Res Cardiol. 2021;116(1):10. doi: 10.1007/s00395-021-00846-y
  45. Bie ZD, Sun LY, Geng CL, et al. MiR-125b regulates SFRP5 expression to promote growth and activation of cardiac fibroblasts. Cell Biol Int. 2016;40(11):1224–1234. doi: 10.1002/cbin.10677
  46. Sun LY, Zhao JC, Ge XM, et al. Circ_LAS1L regulates cardiac fibroblast activation, growth, and migration through miR-125b/SFRP5 pathway. Cell Biochem Funct. 2020;38(4):443–450. doi: 10.1002/cbf.3486
  47. Ke H, Zhang X, Cheng L, et al. Bioinformatic analysis to explore key genes associated with brain ischemia-reperfusion injury in rats. Int J Neurosci. 2019;129(10):945–954. doi: 10.1080/00207454.2019.1595615
  48. Wang X, Ha T, Zou J, et al. MicroRNA-125b protects against myocardial ischaemia/reperfusion injury via targeting p53-mediated apoptotic signalling and TRAF6. Cardiovasc Res. 2014;102(3): 385–395. doi: 10.1093/cvr/cvu044
  49. Li L, Zhang M, Chen W, et al. LncRNA-HOTAIR inhibition aggravates oxidative stress-induced H9c2 cells injury through suppression of MMP2 by miR-125. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):996–1006. doi: 10.1093/abbs/gmy102
  50. Luo C, Ling GX, Lei BF, et al. Circular RNA PVT1 silencing prevents ischemia-reperfusion injury in rat by targeting microRNA-125b and microRNA-200a. J Mol Cell Cardiol. 2021;159: 80–90. doi: 10.1016/j.yjmcc.2021.05.019
  51. Hu W, Chang G, Zhang M, et al. MicroRNA-125a-3p affects smooth muscle cell function in vascular stenosis. J Mol Cell Cardiol. 2019;136:85–94. doi: 10.1016/j.yjmcc.2019.08.014
  52. Chen F, Liu H, Wu J, et al. miR-125a suppresses TrxR1 expression and is involved in H2O2-induced oxidative stress in endothelial cells. J Immunol Res. 2018;2018:6140320. doi: 10.1155/2018/6140320
  53. Svensson D, Gidlöf O, Turczyńska KM, et al. Inhibition of microRNA-125a promotes human endothelial cell proliferation and viability through an antiapoptotic mechanism. J Vasc Res. 2014;51(3):239–245. doi: 10.1159/000365551
  54. Díaz I, Calderón-Sánchez E, Toro RD, et al. miR-125a, miR-139 and miR-324 contribute to Urocortin protection against myocardial ischemia-reperfusion injury. Sci Rep. 2017;7(1):8898. doi: 10.1038/s41598-017-09198-x
  55. Zhang B, Mao S, Liu X, et al. MiR-125b inhibits cardiomyocyte apoptosis by targeting BAK1 in heart failure. Mol Med. 2021;27(1):72. doi: 10.1186/s10020-021-00328-w
  56. Galluzzo A, Gallo S, Pardini B, et al. Identification of novel circulating microRNAs in advanced heart failure by next-generation sequencing. ESC Heart Fail. 2021;8(4):2907–2919. doi: 10.1002/ehf2.13371
  57. Liu H, Deng S, Han L, et al. Mesenchymal stem cells, exosomes and exosome-mimics as smart drug carriers for targeted cancer therapy. Colloids Surf B Biointerfaces. 2022;209(Pt 1):112163. doi: 10.1016/j.colsurfb.2021.112163
  58. Nazari-Shafti T, Neuber S, Duran A, et al. MiRNA profiles of extracellular vesicles secreted by mesenchymal stromal cells-can they predict potential off-target effects? Biomolecules. 2020;10(9):1353. doi: 10.3390/biom10091353
  59. Lin F, Zhang S, Liu X, Wu M. Mouse bone marrow derived mesenchymal stem cells-secreted exosomal microRNA-125b-5p suppresses atherosclerotic plaque formation via inhibiting Map4k4. Life Sci. 2021;274:119249. doi: 10.1016/j.lfs.2021.119249
  60. Xiao C, Wang K, Xu Y, et al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b. Circ Res. 2018;123(5):564–578. doi: 10.1161/circresaha.118.312758
  61. Huang CC, Chen DY, Wei HJ, et al. Hypoxia-induced therapeutic neovascularization in a mouse model of an ischemic limb using cell aggregates composed of HUVECs and cbMSCs. Biomaterials. 2013;34(37):9441–9450. doi: 10.1016/j.biomaterials.2013.09.010
  62. Zhu LP, Tian T, Wang JY, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics. 2018;8(22):6163–6177. doi: 10.7150/thno.28021
  63. Herrero D, Albericio G, Higuera M, et al. The vascular niche for adult cardiac progenitor cells. Antioxidants (Basel). 2022;11(5):882. doi: 10.3390/antiox11050882
  64. Li L, Wang Q, Yuan Z, et al. LncRNA-MALAT1 promotes CPC proliferation and migration in hypoxia by up-regulation of JMJD6 via sponging miR-125. Biochem Biophys Res Commun. 2018;499(3): 711–718. doi: 10.1016/j.bbrc.2018.03.216

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##