Role of longitudinal measurement of autoantibodies in predicting type 1 diabetes mellitus in children

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Prediction of type 1 diabetes mellitus (T1DM) at the preclinical stage allows for timely initiation of preventive therapeutic interventions and may prevent disease progression.

AIM: This work aimed to evaluate the potential of predicting T1DM based on autoantibody concentrations and their changes.

METHODS: A prospective longitudinal cohort study was conducted in three regional children’s hospitals: in Nizhny Novgorod, the Chuvash Republic, and the Republic of Mari El. The study included children aged 0–18 years hospitalized with newly diagnosed T1DM between 2017 and 2020, as well as their healthy siblings (enrolled concurrently). Data from 517 participants were analyzed: 314 children with newly diagnosed T1DM and 203 healthy siblings. Regression modeling was applied for the analysis of repeated measurements. Antibodies to glutamate decarboxylase, tyrosine phosphatase, and zinc transporter 8 were determined.

RESULTS: Among healthy siblings, a high risk of developing T1DM was associated with: elevated baseline concentrations of all three antibodies (57.5–92 times higher than reference values on average); a significant and rapid decrease in glutamate decarboxylase and tyrosine phosphatase concentrations −23.29 and −43.3 IU/mL per month, respectively; and a slight and very slow decrease in zinc transporter 8 concentration −5.3 U/mL per month.

CONCLUSION: Modeling the longitudinal profiles of glutamate decarboxylase, tyrosine phosphatase, and zinc transporter 8 may serve as the basis for the development of more advanced and precise diagnostic systems. This approach appears promising but requires further investigation.

About the authors

Kseniya G. Korneva

Privolzhsky Research Medical University

Author for correspondence.
Email: ksenkor@mail.ru
ORCID iD: 0000-0003-3293-4636
SPIN-code: 5945-3266

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, 10/1 Minin and Pozharsky sq, Nizhny Novgorod, 603000

Dmitry A. Chichevatov

Penza State University

Email: chichevatov69@mail.ru
ORCID iD: 0000-0001-6436-3386
SPIN-code: 9518-2170

MD, Dr. Sci. (Medicine)

Russian Federation, Penza

Leonid G. Strongin

Privolzhsky Research Medical University

Email: malstrong@mail.ru
ORCID iD: 0000-0003-2645-2729
SPIN-code: 9641-8130

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Nizhny Novgorod

Vladimir E. Zagainov

Privolzhsky Research Medical University

Email: zagainov@mail.com
ORCID iD: 0000-0002-5769-0378
SPIN-code: 6477-0291

MD, Dr. Sci. (Medicine)

Russian Federation, Nizhny Novgorod

References

  1. O'Donovan AJ, Gorelik S, Nally LM. Shifting the paradigm of type 1 diabetes: a narrative review of disease modifying therapies. Front Endocrinol (Lausanne). 2024;15:1477101. doi: 10.3389/fendo.2024.1477101 EDN: CGEGYK
  2. Insel RA, Dunne JL, Atkinson MA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015;38(10):1964–1974. doi: 10.2337/dc15-1419
  3. Vehik K, Bonifacio E, Lernmark Å, et al. Hierarchical order of distinct autoantibody spreading and progression to type 1 diabetes in the TEDDY Study. Diabetes Care. 2020;43(9):2066–2073. doi: 10.2337/dc19-2547 EDN: AGERRL
  4. Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473–2479. doi: 10.1001/jama.2013.6285
  5. Krischer JP; Type 1 Diabetes TrialNet Study Group. The use of intermediate endpoints in the design of type 1 diabetes prevention trials. Diabetologia. 2013;56(9):1919–1924. doi: 10.1007/s00125-013-2960-7 EDN: XALQKS
  6. Quinn LM, Swaby R, Tatovic D, et al. What does the licensing of teplizumab mean for diabetes care? Diabetes Obes Metab. 2023;25(8):2051–2057. doi: 10.1111/dom.15071 EDN: WAVMOX
  7. Achenbach P, Warncke K, Reiter J, et al. Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes. 2004;53(2):384–392. doi: 10.2337/diabetes.53.2.384
  8. Podichetty JT, Lang P, O'Doherty IM, et al. Leveraging real-world data for EMA qualification of a model-based biomarker tool to optimize type-1 diabetes prevention studies. Clin Pharmacol Ther. 2022;111(5):1133–1141. doi: 10.1002/cpt.2559 EDN: LVIMAI
  9. Kawasaki E. Anti-islet autoantibodies in type 1 diabetes. Int J Mol Sci. 2023;24(12):10012. doi: 10.3390/ijms241210012 EDN: NVMPEG
  10. Endesfelder D, Zu Castell W, Bonifacio E, et al. Time-resolved autoantibody profiling facilitates stratification of preclinical type 1 diabetes in children. Diabetes. 2019;68(1):119–130. doi: 10.2337/db18-0594
  11. Pozzilli V, Grasso EA, Tomassini V. Similarities and differences between multiple sclerosis and type 1 diabetes. Diabetes Metab Res Rev. 2022;38(1):e3505. doi: 10.1002/dmrr.3505 EDN: CZOJES
  12. Bonifacio E, Achenbach P. Birth and coming of age of islet autoantibodies. Clin Exp Immunol. 2019;198(3):294–305. doi: 10.1111/cei.13360

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Histograms of initial concentrations of three circulating antibodies: against glutamate decarboxylase (GADA), tyrosine phosphatase (IA-2A), and zinc transporter 8 (ZnT8A). The x-axis represents autoantibody concentrations, IU/mL or U/mL (for ZnT8A), limited to values corresponding to the Q85 quantile. The left-hand graphs represent healthy siblings (group 2), and the right-hand graphs represent patients with type 1 diabetes (groups 1 and 3).

Download (260KB)
3. Fig. 2. Initial concentrations of autoantibodies against glutamate decarboxylase (GADA), tyrosine phosphatase (IA-2A), and zinc transporter 8 (ZnT8A). The y-axis indicates concentration units: IU/mL or U/mL (for ZnT8A).

Download (154KB)
4. Fig. 3. Changes in concentrations of autoantibodies against glutamate decarboxylase (GADA), tyrosine phosphatase (IA-2A), and zinc transporter 8 (ZnT8A) depending on time in the study groups. Y-axis – concentration (IU/ml or U/ml for ZnT8A).

Download (616KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».