Relaxin as a biological marker and therapeutic target in heart failure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An important task of modern cardiology is the search and study of new cardiovascular biological markers that can help in the early diagnosis of heart diseases, serve as a tool to assess the effectiveness of treatment, and act as a prognostic marker and risk stratification criterion. This literature review aimed to consider relaxin (RLN) as a new diagnostic and prognostic cardiovascular biological marker. RLN is a natural peptide hormone with a molecular weight of approximately 6000 daltons. RLN2 is the main circulating form of RLN in the blood. Although human RLN2 was originally discovered as a hormone mainly secreted by the corpus luteum of the ovary, it is also synthesized in various tissues in non-pregnant women and men and is considered one of the most pleiotropic hormones of the human body, which perform various activities beyond reproduction.

The availability of serelaxin (a recombinant molecule identical to human RLN2) has made it possible to study the effects of RLN2 on the cardiovascular system, kidneys, liver, and brain and to evaluate it in several randomized placebo-controlled clinical trials. RLN2 exerts many cardioprotective effects on the heart and vessels and has been proposed as a therapeutic target for cardiovascular diseases such as heart failure, atrial fibrillation, coronary heart disease, myocardial infarction, and arterial hypertension. Through the activation of its cognate receptor and subsequent flow of several molecular signaling pathways in the cardiovascular system, RLN2 can induce vasodilation and angiogenesis, increase arterial compliance and cardiac output, reduce vascular resistance, exert antifibrotic effects through regulation and remodeling of extracellular matrix turnover, reduce inflammation and apoptosis, inhibit oxidative stress, induce chronotropic and inotropic effects, and inhibit ventricular and atrial ectopic activity.

Further studies are needed to demonstrate the potential use of RLN as an additional laboratory tool for diagnosis, risk stratification, and prediction of cardiovascular events in patients with heart failure. The effects of relaxin on morbidity and mortality in patients with heart failure have yet to be evaluated in more detail.

About the authors

Amina M. Alieva

N.I. Pirogov Russian National Research Medical University

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Med.), assistant professor

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Elena V. Reznik

N.I. Pirogov Russian National Research Medical University

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-code: 3494-9080
ResearcherId: N-6856-2016

MD, Dr. Sci. (Med.), professor

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Irina E. Baykova

N.I. Pirogov Russian National Research Medical University

Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-code: 3054-8884

MD, Cand. Sci. (Med.), assistant professor

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Natalia V. Teplova

N.I. Pirogov Russian National Research Medical University

Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680
SPIN-code: 9056-1948

MD, Dr. Sci. (Med.), professor

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Kira V. Voronkova

N.I. Pirogov Russian National Research Medical University

Email: kiravoronkova@yandex.ru
ORCID iD: 0000-0003-1111-6378
SPIN-code: 1636-7627

MD, Dr. Sci. (Med.), professor

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Irina V. Kovtyukh

Scientific-Clinical Center N 2 of the Russian Research Center for Surgery named after Academician B.V. Petrovsky

Email: nurzhanna@yandex.ru
ORCID iD: 0000-0002-9176-1889
SPIN-code: 4746-3716

assistant

Russian Federation, Moscow

Nyurzhanna Kh. Khadzhieva

DNA Genetics Clinic «MedEstet»

Email: nurzhanna@yandex.ru
ORCID iD: 0000-0002-5520-281X
SPIN-code: 2520-8520

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Elena V. Surskaya

Scientific-Clinical Center N 2 of the Russian Research Center for Surgery named after Academician B.V. Petrovsky

Email: esurskaya@mail.ru
ORCID iD: 0000-0002-6847-219X
SPIN-code: 3047-8389

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Irina A. Kotikova

N.I. Pirogov Russian National Research Medical University

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN-code: 1423-7300

student

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

Igor G. Nikitin

N.I. Pirogov Russian National Research Medical University

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-code: 3595-1990

MD, Dr. Sci. (Med.),professor

Russian Federation, 1 Ostrovityanova street, 117997 Moscow

References

  1. World Health Organization [Internet]. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019. Geneva: World Health Organization; 2020. Available from: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
  2. Roger VL. Epidemiology of heart failure: a contemporary perspective. Circ Res. 2021;128(10):1421–1434. doi: 10.1161/CIRCRESAHA.121.318172
  3. Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. (In Russ). doi: 10.20514/2226-6704-2018-8-5-333-345
  4. Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ). doi: 10.26442/20751753.2021.10.201113
  5. Aliyeva AM, Baykova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskii arkhiv. 2019;91(9):145–149. (In Russ). doi: 10.26442/00403660.2019.09.000226
  6. Alieva AM, Pinchuk TV, Almazova II, et al. Сlinical value of blood biomarker ST2 in patients with chronic heart failure. Consilium Medicum. 2021;23(6):522–526. (In Russ). doi: 10.26442/20751753.2021.6.200606
  7. Aragón-Herrera A, Feijóo-Bandín S, Anido-Varela L, et al. Relaxin-2 as a potential biomarker in cardiovascular diseases. J Pers Med. 2022;12(7):1021. doi: 10.3390/jpm12071021
  8. Hisaw FL. Experimental relaxation of the pubic ligament of the guinea pig. Exp Biol Med. 1926;23(8):661–663. doi: 10.3181/00379727-23-3107
  9. Zarrow MX, Holmstrom EG, Salhanick HA. The concentration of relaxin in the blood serum and other tissues of women during pregnancy. J Clin Endocrinol Metab. 1955;15(1):22–27. doi: 10.1210/jcem-15-1-22
  10. MacLennan AH. The role of relaxin in human reproduction. Clin Reprod Fertil. 1983;2(2):77–95.
  11. Chen SA, Perlman AJ, Spanski N, et al. The pharmacokinetics of recombinant human relaxin in nonpregnant women after intravenous, intravaginal, and intracervical administration. Pharm Res. 1993;10(6):834–838.
  12. Kosyakova OV, Bespalova ОN. Prognostic possibilities of relaxin as a marker of preterm birth. Journal of Obstetrics and Womens Diseases. 2018;67(2):16–25. (In Russ). doi: 10.17816/JOWD67216-25
  13. Jelinic M, Marshall SA, Leo CH, et al. From pregnancy to cardiovascular disease: lessons from relaxin-deficient animals to understand relaxin actions in the vascular system. Microcirculation. 2019;26(2):e12464. doi: 10.1111/micc.12464
  14. Feijoo-Bandin S, Aragon-Herrera A, Rodiguez-Penas D, et al. Relaxin-2 in cardiometabolic diseases: mechanisms of action and future perspectives. Front Physiol. 2017;8:599. doi: 10.3389/fphys.2017.00599
  15. Sassoli C, Nistri S, Chellini F, Bani D. Human recombinant relaxin (serelaxin) as anti-fibrotic agent: pharmacology, limitations and actual perspectives. Curr Mol Med. 2022;22(3):196–208. doi: 10.2174/1566524021666210309113650
  16. Hudson P, Haley J, John M, et al. Structure of a genomic clone encoding biologically active human relaxin. Nature. 1983;301(5901):628–631. doi: 10.1038/301628a0
  17. Bathgate RA, Halls ML, van der Westhuizen ET, et al. Relaxin family peptides and their receptors. Physiol Rev. 2013;93(1):405–480. doi: 10.1152/physrev.00001.2012
  18. Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol. 2011;47(1):R1–R10. doi: 10.1530/JME-11-0022
  19. Bathgate RAD, Kocan M, Scott DJ, et al. The relaxin receptor as a therapeutic target — perspectives from evolution and drug targeting. Pharmacol Ther. 2018;187:114–132. doi: 10.1016/j.pharmthera.2018.02.008
  20. Kwantwi LB. The dual and multifaceted role of relaxin-2 in cancer. Clin Transl Oncol. 2023;25(10):2763–2771. doi: 10.1007/s12094-023-03146-0
  21. Valkovic AL, Bathgate RA, Samuel CS, Kocan M. Understanding relaxin signalling at the cellular level. Mol Cell Endocrinol. 2019;487:24–33. doi: 10.1016/j.mce.2018.12.017
  22. Chen TY, Li X, Hung CH, et al. The relaxin family peptide receptor 1 (RXFP1): an emerging player in human health and disease. Mol Genet Genomic Med. 2020;8(4):e1194. doi: 10.1002/mgg3.1194
  23. Unemori E. Serelaxin in clinical development: past, present and future. Br J Pharmacol. 2017;174(10):921–932. doi: 10.1111/bph.13695 Erratum in: Br J Pharmacol;174(15):2608.
  24. Unemori E, Sibai B, Teichman SL. Scientific rationale and design of a phase i safety study of relaxin in women with severe preeclampsia. Ann N Y Acad Sci. 2009;1160:381–384. doi: 10.1111/j.1749-6632.2009.03838.x
  25. Gifford FJ, Dunne PDJ, Weir G, et al. A phase 2 randomised controlled trial of serelaxin to lower portal pressure in cirrhosis (STOPP). Trials. 2020;21(1):260. doi: 10.1186/s13063-020-4203-9
  26. Weiss G, Teichman S, Stewart D, et al. Recombinant human relaxin versus placebo for cervical ripening: a double-blind randomised trial in pregnant women scheduled for induction of labour. BMC Pregnancy Childbirth. 2016;16(1):260. doi: 10.1186/s12884-016-1046-1
  27. Khanna D, Clements PJ, Furst DE, et al. Recombinant human relaxin in the treatment of systemic sclerosis with diffuse cutaneous involvement: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2009;60(4):1102–1111. doi: 10.1002/art.24380
  28. Dahlke M, Halabi A, Canadi J, et al. Pharmacokinetics of serelaxin in patients with severe renal impairment or end-stage renal disease requiring hemodialysis: a single-dose, open-label, parallel-group study. J Clin Pharmacol. 2016;56(4):474–483. doi: 10.1002/jcph.607
  29. Kobalava Z, Villevalde S, Kotovskaya Y, et al. Pharmacokinetics of serelaxin in patients with hepatic impairment: a single-dose, open-label, parallel group study. Br J Clin Pharmacol. 2015;79(6):937–945. doi: 10.1111/bcp.12572
  30. Jelinic M, Marshall SA, Stewart D, et al. Peptide hormone relaxin: from bench to bedside. Am J Physiol Regul Integr Comp Physiol. 2018;314(6):R753–R760. doi: 10.1152/ajpregu.00276.2017
  31. Cannon JA, McKean AR, Jhund PS, McMurray JJ. What can we learn from RELAX-AHF compared to previous AHF trials and what does the future hold? Open Heart. 2015;2(1):e000283. doi: 10.1136/openhrt-2015-000283
  32. Metra M, Teerlink JR, Cotter G, et al. Effects of serelaxin in patients with acute heart failure. N Engl J Med. 2019;381(8):716–726. doi: 10.1056/NEJMoa1801291
  33. Martin B, Romero G, Salama G. Cardioprotective actions of relaxin. Mol Cell Endocrinol. 2019;487:45–53. doi: 10.1016/j.mce.2018.12.016
  34. Sarwar M, Du X-J, Dschietzig TB, et al. The actions of relaxin on the human cardiovascular system. Br J Pharmacol. 2017;174(10):933–949. doi: 10.1111/bph.13523 Erratum in: Br J Pharmacol. 2017;174(24):4836.
  35. Nistri S, Pini A, Sassoli C, et al. Relaxin promotes growth and maturation of mouse neonatal cardiomyocytes in vitro: clues for cardiac regeneration. J Cell Mol Med. 2012;16(3):507–519. doi: 10.1111/j.1582-4934.2011.01328.x
  36. Moore XL, Tan SL, Lo CY, et al. Relaxin antagonizes hypertrophy and apoptosis in neonatal rat cardiomyocytes. Endocrinology. 2007;148(4):1582–1589. doi: 10.1210/en.2006-1324
  37. Shaw EE, Wood P, Kulpa J, et al. Relaxin alters cardiac myofilament function through a pkc-dependent pathway. Am J Physiol Circ Physiol. 2009;297(1):H29–H36. doi: 10.1152/ajpheart.00482.2008
  38. Boccalini G, Sassoli C, Formigli L, et al. Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: involvement of the Notch-1 pathway. FASEB J. 2015;29(1):239–249. doi: 10.1096/fj.14-254854
  39. Aragón-Herrera A, Feijóo-Bandín S, Rodríguez-Penas D, et al. Relaxin activates AMPK-AKT signaling and increases glucose uptake by cultured cardiomyocytes. Endocrine. 2018;60(1):103–111. doi: 10.1007/s12020-018-1534-3
  40. Aragón-Herrera A, Feijoo-Bandín S, Abella V, et al. Serelaxin (recombinant human relaxin-2) treatment affects the endogenous synthesis of long chain poly-unsaturated fatty acids and induces substantial alterations of lipidome and metabolome profiles in rat cardiac tissue. Pharmacol Res. 2019;144:51–65. doi: 10.1016/j.phrs.2019.04.009
  41. Wang C, Pinar AA, Widdop RE, et al. The anti-fibrotic actions of relaxin are mediated through AT2 R-associated protein phosphatases via RXFP1-AT2 R functional crosstalk in human cardiac myofibroblasts. FASEB J. 2020;34(6):8217–8233. doi: 10.1096/fj.201902506R
  42. Sassoli C, Chellini F, Pini A, et al. Relaxin prevents cardiac fibroblast-myofibroblast transition via Notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One. 2013;8(5):e63896. doi: 10.1371/journal.pone.0063896
  43. Brecht A, Bartsch C, Baumann G, et al. Relaxin inhibits early steps in vascular inflammation. Regul Pept. 2011;166(1-3):76–82. doi: 10.1016/j.regpep.2010.09.001
  44. Pini A, Boccalini G, Baccari MC, et al. Protection from cigarette smoke-induced vascular injury by recombinant human relaxin-2 (serelaxin). J Cell Mol Med. 2016;20(5):891–902. doi: 10.1111/jcmm.12802
  45. Ng HH, Leo CH, Parry LJ. Serelaxin (recombinant human relaxin-2) prevents high glucose-induced endothelial dysfunction by ameliorating prostacyclin production in the mouse aorta. Pharmacol Res. 2016;107:220–228. doi: 10.1016/j.phrs.2016.03.011
  46. Dschietzig T, Brecht A, Bartsch C, et al. Relaxin improves TNF-α-induced endothelial dysfunction: the role of glucocorticoid receptor and phosphatidylinositol 3-kinase signalling. Cardiovasc Res. 2012;95(1):97–107. doi: 10.1093/cvr/cvs149
  47. Teerlink JR, Metra M, Felker GM, et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet. 2009;373(9673):1429–1439. doi: 10.1016/S0140-6736(09)60622-X
  48. Teerlink JR, Cotter G, Davison BA, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381(9860): 29–39. doi: 10.1016/S0140-6736(12)61855-8
  49. Hossain MA, Kocan M, Yao ST, et al. A single-chain derivative of the relaxin hormone is a functionally selective agonist of the g protein-coupled receptor, RXFP1. Chem Sci. 2016;7(6): 3805–3819. doi: 10.1039/C5SC04754D
  50. Agoulnik AI, Agoulnik IU, Hu X, Marugan J. Synthetic non-peptide low molecular weight agonists of the relaxin receptor 1. Br J Pharmacol. 2017;174(10):977–989. doi: 10.1111/bph.13656
  51. Mardhian DF, Storm G, Bansal R, Prakash J. Nano-targeted relaxin impairs fibrosis and tumor growth in pancreatic cancer and improves the efficacy of gemcitabine in vivo. J Control Release. 2018;290:1–10. doi: 10.1016/j.jconrel.2018.09.031
  52. Hu M, Wang Y, Xu L, et al. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nat Commun. 2019;10(1):2993. doi: 10.1038/s41467-019-10893-8
  53. Pearson SJ, Burgess KE, Onambélé GL. Serum relaxin levels affect the in vivo properties of some but not all tendons in normally menstruating young women. Exp Physiol. 2011;96(7):681–688. doi: 10.1113/expphysiol.2011.057877
  54. Johnson MR, Abbas AA, Allman AC, et al. The regulation of plasma relaxin levels during human pregnancy. J Endocrinol. 1994;142(2):261–265. doi: 10.1677/joe.0.1420261
  55. Ogueh O, Clough A, Hancock M, Johnson MR. A longitudinal study of the control of renal and uterine hemodynamic changes of pregnancy. Hypertens Pregnancy. 2011;30(3):243–259. doi: 10.3109/10641955.2010.484079
  56. Dschietzig T, Richter C, Bartsch C, et al. The pregnancy hormone relaxin is a player in human heart failure. FASEB J. 2001;15(12): 2187–2195. doi: 10.1096/fj.01-0070com
  57. Bani D. Recombinant human H2 relaxin (serelaxin) as a cardiovascular drug: aiming at the right target. Drug Discov Today. 2020;25(7):1239–1244. doi: 10.1016/j.drudis.2020.04.014
  58. El Khoudary SR, Aggarwal B, Beckie TM, et al. Menopause transition and cardiovascular disease risk: implications for timing of early prevention: a scientific statement from the American Heart Association. Circulation. 2020;142(25):506–532. doi: 10.1161/CIR.0000000000000912
  59. Xie J, Chen Y, Li L, Zhang S. H2 relaxin expression and its effect on clinical outcomes in patients with chronic heart failure. Int J Clin Exp Med. 2015;8(3):4420–4424.
  60. Han L, Luo J, Bai S, et al. Combined assessment of relaxin and B-type natriuretic peptide improves diagnostic value in patients with congestive heart failure. Am J Med Sci. 2017;354(5):480–485. doi: 10.1016/j.amjms.2017.07.002
  61. Simon J, Nemeth E, Nemes A, et al. Circulating relaxin-1 level is a surrogate marker of myocardial fibrosis in HFrEF. Front Physiol. 2019;10:690. doi: 10.3389/fphys.2019.00690
  62. Pintalhão M, Vasques-Nóvoa F, Couto-Viana B, et al. Relaxin-2, pathophysiological insights and outcomes in heart failure with preserved ejection fraction: findings from the NETDiamond cohort. Int J Cardiol. 2022;365:87–90. doi: 10.1016/j.ijcard.2022.07.037
  63. Pintalhão M, Castro-Chaves P, Vasques-Nóvoa F, et al. Relaxin serum levels in acute heart failure are associated with pulmonary hypertension and right heart overload. Eur J Heart Fail. 2017;19(2):218–225. doi: 10.1002/ejhf.611
  64. Damp J, Givertz MM, Semigran M, et al. Relaxin-2 and soluble Flt1 levels in peripartum cardiomyopathy: results of the multicenter IPAC study. JACC Heart Fail. 2016;4(5):380–388. doi: 10.1016/j.jchf.2016.01.004
  65. Grand J, Miger K, Sajadieh A, et al. Blood pressure drops during hospitalization for acute heart failure treated with serelaxin: a patient-level analysis of 4 randomized controlled trials. Circ Heart Fail. 2022;15(4):e009199. doi: 10.1161/CIRCHEARTFAILURE.121.009199
  66. Devarakonda T, Valle Raleigh J, Mauro AG, et al. Chronic treatment with serelaxin mitigates adverse remodeling in a murine model of ischemic heart failure and modulates bioactive sphingolipid signaling. Sci Rep. 2022;12(1):8897. doi: 10.1038/s41598-022-12930-x
  67. McCarthy JC, Aronovitz M, DuPont JJ, et al. Short-term administration of serelaxin produces predominantly vascular benefits in the angiotensin II/L-NAME chronic heart failure model. JACC Basic Transl Sci. 2017;2(3):285–296. doi: 10.1016/j.jacbts.2017.03.011
  68. Illiano S, Poirier B, Minoletti C, et al. Characterization of a new potent and long-lasting single chain peptide agonist of RXFP1 in cells and in vivo translational models. Sci Rep. 2022;12(1):20435. doi: 10.1038/s41598-022-24716-2
  69. Alam F, Gaspari TA, Kemp-Harper BK, et al. The single-chain relaxin mimetic, B7-33, maintains the cardioprotective effects of relaxin and more rapidly reduces left ventricular fibrosis compared to perindopril in an experimental model of cardiomyopathy. Biomed Pharmacother. 2023;160:114370. doi: 10.1016/j.biopha.2023.114370
  70. Verdino P, Lee SL, Cooper FN, et al. Development of a long-acting relaxin analogue, LY3540378, for treatment of chronic heart failure. Br J Pharmacol. 2023;180(15):1965–1980. doi: 10.1111/bph.16055

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The beneficial effects of relaxin on the cardiovascular system. Here: Ang 2 — angiotensin 2; ЧСС — heart rate; α-CMA, smooth muscle cell actin; 8-OHdG, 8-hydroxy-2-deoxyguanosine-8-OH-deoxyguanosine; b-FGF, basic fibroblast growth factor; BMDEC, bone marrow-derived endothelial cells; Cx43, connexin43; ETBR, endothelin type B receptor; GPX, glutathione peroxidase; GSH, glutathione; IL-1β, interleukin-1β; IL-6, interleukin-6; LDH, lactate dehydrogenase; MCP-1, monocyte chemotactic protein-1; MDA, malondialdehyde-malonic dialdehyde; MMP, matrix metalloproteinase; NADPH, nicotinamideadenine dinucleotide phosphate; NLRP3, nucleotide-binding oligomerization domain and receptors containing leucine-rich repeats; NO, nitric oxide; NOS, nitric oxide synthase; Nrf2/HO-1, nuclear factor erythroid-2-related transcription factor/hemoxygenase 1; pAMPK, adenosine monophosphate-activated protein kinase; pAS160, phosphoactivated substrate 160 kilodalton; pERK1/2, signal-regulated protein kinases 1 and 2; PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species SOD, superoxide dismutase; SVR, systemic vascular resistance; TBAR, thiobarbituric acid; TIMP, tissue inhibitors of metalloproteinases; TNF-α, tumor necrosis factor α; VEGF, vascular endothelial growth factor; K, potassium; ↑, increase; ↓, decrease.

Download (653KB)

Copyright (c) 2023 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies