COVID-19: from neurotropism to neurorehabilitation under a pandemic condition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the review presented, based on the relevant literature data from foreign experts, the mechanisms of the neurotrophic action of the SARS-CoV-2 virus are considered, as well as the consequences of its neuroinvasion in the form of documented neurological manifestations during the COVID-19 pandemic. The risks of neurological diseases and methods of their treatment are analyzed, which in turn can affect the susceptibility to COVID-19. The range of rehabilitation syndromes is systematized, and relevant aspects of medical rehabilitation of patients after COVID-19 with an emphasis on its neurological manifestations are highlighted.

About the authors

Yury A. Merkulov

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine; Scientific Research Institute of General Pathology and Pathophysiology

Author for correspondence.
Email: 4181220@gmail.com
ORCID iD: 0000-0001-7684-9834

MD, PhD, DSc

Russian Federation, Moscow

Elena V. Kostenko

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine; N.I. Pirogov Russian National Research Medical University

Email: Ekostenko58@mail.ru
ORCID iD: 0000-0003-0629-9659

MD, PhD, DSC, Professor

Russian Federation, Moscow

Dina M. Merkulova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: dinamerk@mail.ru
ORCID iD: 0000-0003-0368-683X

MD, PhD, DSc, Professor

Russian Federation, Moscow

Nadezhda P. Lyamina

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine

Email: lyana_n@mail.ru
ORCID iD: 0000-0001-6939-3234

MD, PhD, DSc, Professor

Russian Federation, Moscow

References

  1. Glass W.G., Subbarao K., Murphy B., Murphy P.M. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol. 2004;173(6):4030-9. doi: 10.4049/jimmunol.173.6.4030.
  2. Dubé M., Le Coupanec A., Wong A.H., Rini J.M., Desforges M., Talbot P.J. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol. 2018;92(17):e00404-18. doi: 10.1128/JVI.00404-18.
  3. Talbot P.J., Ekandé S., Cashman N.R., Mounir S., Stewart J.N. Neurotropism of human coronavirus 229E. Adv Exp Med Biol. 1993; 342:339-46. doi: 10.1007/978-1-4615-2996-5_52.
  4. Khan S., Ali A., Siddique R., Nabi G. Novel coronavirus is putting the whole world on alert. J Hosp Infect. 2020;104(3):252-3. doi: 10.1016/j.jhin.2020.01.019.
  5. Li Y.C., Bai W.Z., Hirano N., Hayashida T., Taniguchi T., Sugita Y. et al. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication. J Comp Neurol. 2013;521(1):203-12. doi: 10.1002/cne.23171.
  6. Li K., Wohlford-Lenane C., Perlman S., Zhao J., Jewell A.K., Re¬znikov L.R. et al. Middle East Respiratory Syndrome Coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213(5):712-22. doi: 10.1093/infdis/jiv499.
  7. Mao L., Wang M., Chen S., He Q., Chang J., Hong C. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. JAMA Neurol. 2020; e201127. doi: 10.1001/jamaneurol.2020.1127.
  8. Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 2020; 11(7):995-8. doi: 10.1021/acschemneuro.0c00122.
  9. To K.F., Lo A.W. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol. 2004;203(3):740-3. doi: 10.1002/path.1597.
  10. Hamming I., Timens W., Bulthuis M.L., Lely A.T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7. doi: 10.1002/path.1570.
  11. Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. J Med Virol. 2020;1-4. doi: 10.1002/jmv.25728.
  12. Boonacker E., Van Noorden C.J. The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol. 2003;82(2):53-73. doi: 10.1078/0171-9335-00302.
  13. Chan P.K., To K.F., Lo A.W., Cheung J.L., Chu I., Au F.W. et al. Persistent infection of SARS coronavirus in colonic cells in vitro. J Med Virol. 2004;74(1):1-7. doi: 10.1002/jmv.20138.
  14. Netland J., Meyerholz D.K., Moore S., Cassell M., Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264-75. doi: 10.1128/JVI.00737-08.
  15. Bernstein H.G., Dobrowolny H., Keilhoff G., Steiner J. Dipeptidyl peptidase IV, which probably plays important roles in Alzheimer disease (AD) pathology, is upregulated in AD brain neurons and associates with amyloid plaques. Neurochem. Int. 2018;114:55-7. doi: 10.1016/j.neuint.2018.01.005.
  16. Ding Y., He L., Zhang Q., Huang Z., Che X., Hou J. et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004; 203(2):622-30. doi: 10.1002/path.1560.
  17. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y. et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005; 202(3):415-24. doi: 10.1084/jem.20050828.
  18. McCray P.B. Jr., Pewe L., Wohlford-Lenane C., Hickey M., Man¬zel L., Shi L. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007; 81(2):813-21. doi: 10.1128/JVI.02012-06.
  19. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323(11):1061-9. doi: 10.1001/jama.2020.1585.
  20. Hadziefendic S., Haxhiu M.A. CNS innervation of vagal preganglionic neurons controlling peripheral airways: a transneuronal labeling study using pseudorabies virus. J Auton Nerv Syst. 1999;76(2-3): 135-45. doi: 10.1016/s0165-1838(99)00020-x.
  21. Brugliera L., Spina A., Castellazzi P., Cimino P., Tettamanti A., Houdayer E. et al. RehabilitationofCOVID-19 patients. J Rehabil Med. 2020;25(7):439-41. doi: 10.1016/j.arcped.2018.08.001.
  22. McNeary L., Maltser S., Verduzco-Gutierrez M. Navigating Coro¬na¬virus Disease 2019 (Covid-19) in physiatry: a CAN report for inpatient rehabilitation facilities. PMR. 2020;12(5):512-5. doi: 10.1002/pmrj.12369.
  23. Asadi-Pooya A.A., Simani L. Central nervous system manifestations of COVID-19: a systematic review. J Neurol Sci. 2020;413:116832. doi: 10.1016/j.jns.2020.116832.
  24. Moriguchi T., Harii N., Goto J., Harada D., Sugawara H., Takamino J. et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55-8. doi: 10.1016/j.ijid.2020.03.062.
  25. Poyiadji N., Shahin G., Noujaim D., Stone M., Patel S., Grif¬fith B. COVID-19–associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020;201187. doi: 10.1148/radiol.2020201187.
  26. Gutiérrez-Ortiz C., Méndez A., Rodrigo-Rey S. Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020;10.1212/WNL.0000000000009619. doi: 10.1212/WNL.0000000000009619.
  27. Zhao H., Shen D., Zhou H., Liu J., Chen S. Guillain–Barré syn¬dro¬me associated with SARS-CoV-2 infection: causality or coinci¬den¬ce? Lancet Neurol. 2020;19(5):383-4. doi: 10.1016/S1474-4422(20)30109-5.
  28. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7.
  29. Talan J. Neurologists in Italy to colleagues in US: Look for poorly-defined neurologic conditions in patients with COVID-19. Neurology Today. 2020;20(8):11. doi: 10.1097/01.nt.0000662096.35724.1f.
  30. Xiang Y.T., Zhao Y.J., Liu Z.H., Li X.H., Zhao N., Cheung T. et al. The COVID-19 outbreak and psychiatric hospitals in China: managing challenges through mental health service reform. Int J Bio Sci. 2020;16:1741-4. doi: 10.7150/ijbs.45072.
  31. Association of British Neurologists Guidance on COVID-19 for people with neurological conditions, their doctors and carers. Version 4, 25 March 2020. Available at: https://www.neural.org.uk/resource_library/association-of-british-neurologists-guidance-on-covid-19/ (accessed 12 April 2020).
  32. Martynov M.Yu., Shamalov N.A., Khasanova D.R., Voznyuk I.A., Alasheev A.M., Kharitonova T.V. Management of patients with acute cerebrovascular accident in the context of the COVID-19 pandemic. Temporary guidelines. Version 1. 06.04.2020. Available at: http://www.evidence-neurology.ru/evidentiary-medicine/klinicheskie-rekomendatsii/vedenie-patsientov-s-ostrimi-na/ (accessed 12 April 2020). (In Russian)
  33. Jin H., Hong C., Chen S., Zhou Y., Wang Y., Mao L. et al. Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke Vasc Neurol. 2020; svn-2020-000382. doi: 10.1136/svn-2020-000382.
  34. Leocani L., Diserens K. Neurorehabilitation facing the COVID-19 pandemic. EAN pages. Published online April 15, 2020. Available at: https://www.eanpages.org/2020/04/15/neurorehabilitation-facing-the-covid-19-pandemic/ (accessed 20 April 2020).
  35. EAN Scientific Panel Coma and Chronic Disorders of Con¬sci¬ous¬ness. Neurorehabilitation of patients with severe brain injury during the Covid-19 epidemic. EAN pages. Published online April 9, 2020. Available at: https://www.eanpages.org/2020/04/09/neuro¬rehabilitation-of-patients-with-severe-brain-injury-during-the-covid-19-epidemic/ (accessed 12 April 2020).
  36. Boldrini P., Bernetti A., Fiore P. Impact of COVID-19 outbreak on rehabilitation services and Physical and Rehabilitation Medicine (PRM) physicians’ activities in Italy. An official document of the Italian PRM Society (SIMFER). Eur J Phys Rehabil Med. 2020 Mar 16. doi: 10.23736/S1973-9087.20.06256-5.
  37. Coraci D., Fusco A., Frizziero A., Giovannini S., Biscotti L., Padua L. Global approaches for global challenges: the possible support of rehabilitation in the management of COVID-19. J Med Virol. 2020 Apr 3. doi: 10.1002/jmv.25829.
  38. Levy J., Léotard A., Lawrence C., Paquereau J., Bensmail D., An¬nane D. et al. A model for a ventilator-weaning and early rehabilitation unit to deal with post-ICU impairments with severe COVID-19. Ann Phys Rehabil Med. 2020;S1877-0657(20)30077-4. doi: 10.1016/j.rehab.2020.04.002.
  39. Carda S., Invernizzi M., Bavikatte G., Bensmaïl D., Bianchi F., Deltombe T. et al. The role of physical and rehabilitation medicine in the COVID-19 pandemic: the clinician’s view. Ann Phys Rehabil Med. 2020;S1877-0657(20)30076-2. doi: 10.1016/j.rehab.2020.04.00.

Copyright (c) 2020 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies