AN INDIRECT PATHWAY FOR GENETIC INFLUENCE ON THE FORMATION OF THE CEREBRAL PALSY PHENOTYPE: GENOME AND HYPOXIA TOLERANCE


Cite item

Full Text

Abstract

The incidence of cerebral palsy is increasing. In 70% of cases, the disease develops as a result of exposure to known pathogenesis factors, such as hypoxia-ischemia, infectious, toxic, and traumatic damage to the fetus. In 30% of cases of the disease, the effect of pathogenetic factors is absent. This determines the relevance of the search for genetic anomalies responsible for the formation of this phenotype. Many genome disorders associated with the development of the cerebral palsy phenotype have been identified. Of particular interest is the indirect influence of genetic factors of pathogenesis, affecting the formation of the disease indirectly, through the mechanisms of formation of hypoxic-ischemic brain damage. Such factors affect almost all stages of the “ischemic cascade”: the formation of a “glutamate shock”, the realization of a “glutamate shock” by cytokines, the defect of the antioxidant defense of a neuron, the realization of the cytotoxic effect of nitric oxide (NO), and the stimulation of apoptosis of neurons and microglia. This makes it possible to identify genome variants that determine the tolerance of the child’s brain to hypoxic-ischemic damage. The combination of carriers of such anomalies into risk groups will make it possible to differentiate the tactics of their observation in the natal and postnatal periods in order to reduce the likelihood of the formation of severe hypoxic-ischemic lesions of the central nervous system and cerebral palsy. Today, a large amount of scientific data has been accumulated on the molecular genetic mechanisms of the pathogenesis of perinatal brain lesions. Such as epigenetic, transcriptome gene expression control mechanisms via micro-RNA. The available information allows us to experimentally develop new methods for protecting the fetal brain from hypoxia-ischemia and stopping the effects of hypoxia-ischemia in the neonatal period.

About the authors

P. L Sokolov

N.V. Voyno-Yasenetsky Scientific and Practical Center for Specialized Assistance for Children Department of Healthcare of Moscow

119619, Moscow, Russian Federation

A. G Prityko

N.V. Voyno-Yasenetsky Scientific and Practical Center for Specialized Assistance for Children Department of Healthcare of Moscow

119619, Moscow, Russian Federation

Natal’ya V. Chebanenko

Russian Medical Academy of Continuous Professional Education

Email: nataqwe@yandex.ru
candidate of medical sciences, Associate Professor of the Child Neurology Department of Further Professional Education «Russian Medical Academy of Continuous Professional Education», 125993, Moscow, Russian Federation 125993, Moskow, Russian Federation

P. A.I Romanov

N.V. Voyno-Yasenetsky Scientific and Practical Center for Specialized Assistance for Children Department of Healthcare of Moscow

119619, Moscow, Russian Federation

References

  1. Little W.J. Deformities of the human frame. Lancet. 1843: 318-22
  2. Клинические рекомендации. Детский церебральный паралич у детей. Союз Педиатров России. 2016
  3. Van Eyk C.L., Corbett M.A., Maclennan A.H. The emerging genetic landscape of cerebral palsy. Handb Clin Neurol. 2018;147:331-342. doi: 10.1016/B978-0-444-63233-3.00022-1.
  4. McMichael G., Bainbridge M.N., Haan E., Corbett M., Gardner A., Thompson S. et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry. 2015; 20(2): 176-82. doi: 10.1038/mp.2014.189
  5. Fleiss B., Chhor V., Rajudin N., Lebon S., Hagberg H., Gressens P., Thornton C. The Anti-Inflammatory Effects of the Small Molecule Pifithrin-µ on BV2 Microglia. Dev Neurosci. 2015; 37(4-5):363-75. doi: 10.1159/000370031
  6. Montaldo P., Kaforou M., Pollara G., Hervás-Marín D., Calabria I., Panadero J. et al. Whole Blood Gene Expression Reveals Specific Transcriptome Changes in Neonatal Encephalopathy. Neonatology. 2019; 115(1): 68-76. doi: 10.1159/000492420
  7. Wu X., Zhu D., Jiang X., Okagaki P., Mearow K., Zhu G. et al. AMPA protects cultured neurons against glutamate excitotoxicity through a phosphatidylinositol 3-kinase-dependent activation in extracellular signal-regulated kinase to upregulate BDNF gene expression. J Neurochem. 2004; 90: 807-18. doi: 10.1111/j.1471-4159.2004.02526.x
  8. Rajatileka S., Odd D., Robinson M.T., Spittle A.C., Dwomoh L., Williams M. et al. Variants of the EAAT2 Glutamate Transporter Gene Promoter Are Associated with Cerebral Palsy in Preterm Infants. Mol Neurobiol. 2018; 55(3): 2013-24. doi: 10.1007/s12035-017-0462-1
  9. Carecchio M., Mencacci N.E., Iodice A., Pons R., Panteghini C., Zorzi G. et al. ADCY5-related movement disorders: Frequency, disease course and phenotypic variability in a cohort of paediatric patients. Parkinsonism Relat Disord. 2017; 41: 37-43. doi: 10.1016/j.parkreldis.2017.05.004
  10. Bi D., Chen M., Zhang X., Wang H., Xia L., Shang Q., Li T. et al. The association between sex-related interleukin-6 gene polymorphisms and the risk for cerebral palsy. J Neuroinflammation. 2014; 11: 100. doi: 10.1186/1742-2094-11-100
  11. Torres-Merino S., Moreno-Sandoval H.N., Thompson-Bonilla M. del R., Leon J.A.O., Gomez-Conde E., Leon-Chavez B.A. et al. Association Between rs3833912/rs16944 SNPs and Risk for Cerebral Palsy in Mexican Children. Mol Neurobiol. 2019; 56(3): 1800-11. doi: 10.1007/s12035-018-1178-6
  12. Hedtjärn M., Mallard C., Eklind S., Gustafson-Brywe K., Hagberg H. Global gene expression in the immature brain after hypoxia-ischemia. J Cereb Blood Flow Metab. 2004; 24(12):1317-32. doi: 10.1097/01.WCB.0000141558.40491.75
  13. Bolouri H., Savman K., Wang W., Thomas A., Maurer N., Dullaghan E. et al. Innate defense regulator peptide 1018 protects against perinatal brain injury. Ann Neurol. 2014; 75: 395-410. doi: 10.1002/ana.24087 24: 1317-32
  14. Li H., Wang X.L., Wu Y.Q., Liu X.M., Li A.M. Correlation of the predisposition of Chinese children to cerebral palsy with nucleotide variation in pri-miR-124 that alters the non-canonical apoptosis pathway. Acta Pharmacol Sin. 2018; 39(9): 1453-62. doi: 10.1038/aps.2017.211
  15. Ma Q., Dasgupta C., Li Y., Bajwa N.M., Xiong F., Harding B., Hartman R., Zhang L. Inhibition of microRNA-210 provides neuroprotection in hypoxic-ischemic brain injury in neonatal rats. Neurobiol Dis. 2016; 89: 202-12. doi: 10.1016/j.nbd.2016.02.011
  16. Zaghloul N., Patel H., Codipilly C., Marambaud P., Dewey S., Frattini S. et al. Overexpression of extracellular superoxide dismutase protects against brain injury induced by chronic hypoxia. PLoS One. 2014; 9(9): e108168. doi: 10.1371/journal.pone.0108168.
  17. Miguel P.M., Pereira L.O., Barth B., de Mendonça Filho E.J., Pokhvisneva I., Nguyen T.T.T. et al. Prefrontal Cortex Dopamine Transporter Gene Network Moderates the Effect of Perinatal Hypoxic-Ischemic Conditions on Cognitive Flexibility and Brain Gray Matter Density in Children. Biol Psychiatry. 2019; 86(8): 621-30. doi: 10.1016/j.biopsych.2019.03.983
  18. Cox-Limpens K.E., Gavilanes A.W., Zimmermann L.J., Vles J.S. Endogenous brain protection: what the cerebral transcriptome teaches us. Brain Res. 2014; 1564: 85-100. doi: 10.1016/j.brainres.2014.04.001
  19. Murrell A., Hurd P.J., Wood I.C. Epigenetic mechanisms in development and disease. Biochem. Soc. Trans. 2013; 41: 697-9. doi: 10.1042/BST20130051
  20. Chen C.C., Wang K.Y., Shen C.K. The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J Biol Chem. 2012; 287: 33116-21. doi: 10.1074/jbc.C112.406975
  21. Munoz P., Estay C., Diaz P., Elgueta C., Ardiles A.O., Lizana P.A. Inhibition of DNA methylation impairs synaptic plasticity during an early time window in rats. Neural Plast. 2016; 2016: 4783836. doi: 10.1155/2016/4783836.
  22. Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain. Science. 2009; 324: 929-30. doi: 10.1126/science.1169786
  23. Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324: 930-5. doi: 10.1126/science.1170116
  24. Cliffe L.J., Kieft R., Southern T., Birkeland S.R., Marshall M., Sweeney K., Sabatini R. JBP1 and JBP2 are two distinct thymidine hydroxylases involved in J biosynthesis in genomic DNA of African trypanosomes. Nucleic Acids Res. 2009; 37(5):1452-62. doi: 10.1093/nar/gkn1067.
  25. D’Alessio A.C., Taranova O.V., Hong K., Sowers L.C., Zhang Y. Role of tet proteins in 5mC to 5hmC conversion, ES-cell selfrenewal and inner cell mass specification. Nature. 2010; 466: 1129-33. doi: 10.1038/nature09303
  26. Song C.X., Szulwach K.E., Fu Y., Dai Q., Yi C., Li X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 2011; 29(1): 68-72. doi: 10.1038/nbt.1732.
  27. Wang Z., Tang B., He Y., and Jin P. DNA methylation dynamics in neurogenesis. Epigenomics. 2016; 8: 401-14. doi: 10.2217/epi.15.119
  28. Noack F., Pataskar A., Schneider M., Buchholz F., Tiwari V.K., Calegari F. Assessment and site-specific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis. Life Sci Alliance. 2019; 2(2). pii: e201900331. doi: 10.26508/lsa.201900331
  29. Tan L., Shi Y.G. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development. 2012; 139: 1895-902. doi: 10.1242/dev. 070771
  30. Shu L., Sun W., Li L., Xu Z., Lin L., Xie P. et al. Genome-wide alteration of 5-hydroxymenthylcytosine in a mouse model of Alzheimer’s disease. BMC Genomics. 2016; 17: 381. doi: 10.1186/s12864-016-2731
  31. Wang F., Yang Y., Lin X., Wang J.-Q., Wu Y.-S., Xie W. et al. Genomewide loss of 5-hmC is a novel epigenetic feature of Huntingtons disease. Hum. Mol. Genet. 2013; 22: 3641-53. doi: 10.1093/hmg/ddt214
  32. Papale L.A., Zhang Q., Li S., Chen K., Keles S., and Alisch R.S. Genomewide disruption of 5-hydroxymethylcytosine in a mouse model of autism. Hum. Mol. Genet. 2015; 24: 7121-31. doi: 10.1093/hmg/ddv411
  33. Zhang Y., Zhang Y., Chen D., Wang C., Chen L., Gao C. et al. Genome-Wide Alteration of 5-Hydroxymethylcytosine in Hypoxic-Ischemic Neonatal Rat Model of Cerebral Palsy. Front Mol Neurosci. 2019;12: 214. doi: 10.3389/fnmol.2019.00214
  34. Малиновская Н.А., Прокопенко С.В., Комлева Ю.К., Панина Ю.А., Пожиленкова Е.А., Рябоконь Р.В. и соавт. Молекулы-маркеры активации глии при нейровоспалении: новые возможности для фармакотерапии нейродегенерации. Сибирское медицинское обозрение. 2014; 5: 5-15
  35. Furune S., Watanabe K., Negoro T., Yamamoto N., Aso K., Takaesu K. Auditory brainstem responce: a comparative study of ipsilateral versus contralateral recording in neurological disorgers in children. Brain & Development. 1985; 7(5): 463-9. doi: 10.1016/j.eplepsyres.2006.02.007
  36. Zhang F., Nance E., Alnasser Y., Kannan R., Kannan S. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. Journal of Neuroinflammation, 2016; 13: 65. doi: 10.1186/s12974-016-0529-3
  37. Mottahedin A., Svedin P., Nair S., Mohn C.J., Wang X., Hagberg H. et al. Systemic activation of Toll-like receptor 2 suppresses mitochondrial respiration and exacerbates hypoxic-ischemic injury in the developing brain. J Cereb Blood Flow Metab. 2017; 37(4): 1192-8. doi: 10.1177/0271678X17691292.
  38. Domingo-Gonzalez R., Martínez-Colón G.J., Smith A.J., Smith C.K., Ballinger M.N., Xia M. et al. Inhibition of neutrophil extracellular trap formation after stem cell transplant by prostaglandin E2. Am. J. Respir. Crit. Care Med. 2016; 193(2): 186-97. doi: 10.1164/rccm.201501-0161OC
  39. Guillemin G.J., Brew B.J. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J. Leukoc. Biol. 2004; 5(3): 388-97. doi: 10.1189/jlb.0303114.
  40. Osredkar D., Thoresen M., Maes E., Flatebø T., Elstad M., Sabir H. Hypothermia is not neuroprotective after infection-sensitized neonatal hypoxic-ischemic brain injury. Resuscitation. 2014; 85(4): 567-72. doi: 10.1016/j.resuscitation.2013.12.006
  41. Hellström Erkenstam N., Smith P.L., Fleiss B., Nair S., Svedin P. et al. Microglia/Macrophage Phenotypes in a Mouse Model of Neonatal Hypoxic-Ischemic Brain Injury. Front Cell Neurosci. 2016; 10: 286. doi: 10.3389/fncel.2016.00286
  42. Монастырская Е.А., Лямина С.В., Малышев Ю.И. М1 и М2 фенотипы активированных макрофагов и их роль в иммунном ответе и патологии. Патогенез. 2008; 6(4): 31-9
  43. Serdar M., Kempe K., Rizazad M., Herz J., Bendix I., Felderhoff-Müser U. et al. Early Pro-inflammatory Microglia Activation After Inflammation-Sensitized Hypoxic-Ischemic Brain Injury in Neonatal Rats. Front Cell Neurosci. 2019;13: 237. doi: 10.3389/fncel.2019.00237.
  44. Thomi G., Surbek D., Haesler V., Joerger-Messerli M., Schoeberlein A. Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res Ther. 2019; 10(1): 105. doi: 10.1186/s13287-019-1207-z
  45. Khwaja O., Volpe J.J. Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed. 2008; 93(2): F153-61. doi: 10.1136/adc.2006.108837.
  46. Hickey E., Shi H., Van Arsdell G., Askalan R. Lipopolysaccharide-induced preconditioning against ischemic injury is associated with changes in tolllike receptor 4 expression in the rat developing brain. Pediatr Res. 2011; 70:10-4. 73. doi: 10.1203/PDR.0b013e31821d02aa
  47. Singh D.K., Ling E.A., Kaur C. Hypoxia and myelination deficits in the developing brain. Int J Dev Neurosci. 2018;70:3-11. doi: 10.1016/j.ijdevneu.2018.06.012.

Copyright (c) 2019 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies