NONCLINICAL STUDIES OF BIOTECHNOLOGY DERIVED MEDICINAL PRODUCTS - THEORY AND PRACTICE SPECIFICITY


Cite item

Full Text

Abstract

Nonclinical studies of biotechnology-derived medicinal products are discussed in the article in terms of new original fusion protein RPH-104 - high potency IL-1β signal pathway antagonist. Specificity of biotherapeutics is connected to complexity of molecules. Efficacy, pharmacokinetic and toxicity nonclinical studies of the biotherapeutics are conducted using relevant species taking into consideration potent immunogenicity. Cytotoxic reactions risk assessment is also important. Accurate nonclinical studies planning can help to obtain sufficient information about potential target organs for toxicity, reversibility of toxic effects and determine safety parameters. According to ethical principles in vivo studies can be optimized using modern in silico analysis, computer modelling and in vitro testing.

About the authors

Mikhail Yu. Samsonov

JSC «R-Pharm»

Email: samsonov@rpharm.ru
candidate of medical sciences, Chief Medical Officer JSC «R-Pharm», 119421, Moscow, Russian Federation 119421, Moscow, Russian Federation

A. A Dmitrieva

JSC «R-Pharm»

119421, Moscow, Russian Federation

G. E Konopleva

JSC «R-Pharm»

119421, Moscow, Russian Federation

E. V Shipaeva

JSC «R-Pharm»

119421, Moscow, Russian Federation

S. F Barbashov

R-Pharm Overseas Inc

92037, San-Diego, USA

Ya. V Lavrovsky

R-Pharm Overseas Inc

92037, San-Diego, USA

References

  1. Комплексная программа развития биотехнологий в российской федерации на период до 2020 года от 24 апреля 2012 г. № 1853п-П8.
  2. Решение Совета ЕЭК №89 «Об утверждении правил исследования биологических лекарственных средств Евразийского экономического союза» от 03.11.2016 г.
  3. ICH S6 (R1) guideline. Preclinical safety evaluation of biotechnology-derived pharmaceuticals. Geneva, International conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. 2011
  4. Решение Совета ЕЭК №78 «О правилах регистрации и экспертизы лекарственных средств для медицинского применения» от 03.11.2016 г.
  5. Авдеева Ж.И., Алпатова Н.А., Солдатов А.А., Бондарев В.П., Бунятян Н.Д., Меркулов В.А. и др. Особенности доклинических исследований биотехнологических лекарственных препаратов. Иммунология. 2015; 36(5): 306-12.
  6. Guideline on immunogenicity assessment of biotechnology-derived therapeutic proteins (EMEA/cHMP/BMwP/14327/2006). London: European Medicines Agency; 2008.
  7. Guideline on immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use (EMA/cHMP/ BMwP/86289/2010). London: European Medicines Agency; 2012.
  8. Guideline on development, production, characterization and specifcations for monoclonal antibodies and related products. London: European Medicines Agency; 2008.
  9. Guidelines on the quality, safety, and effcacy of biotherapeutic protein products prepared by recombinant DnA technology. Replacement of Annex 3 of WHO Technical Report Series, no. 814. world Health Organization October. 2013.
  10. Handbook: good laboratory practice (GLP): quality practices for regulated non-clinical research and development, 2nd ed. Geneva, UnDP/world Bank/wHO, Special Programme for Research and Training in Tropical Diseases; 2009.
  11. Guidance for Industry. Immunogenicity Assessment for Therapeutic Protein Products; 2014.
  12. Декларация от 18 ноября 2011 года «О евразийской экономической интеграции».
  13. Решение Совета ЕЭК №81 «Об утверждении правил надлежащей лабораторной практики Евразийского экономического союза в сфере обращения лекарственных средств» от 03.11.2016 г.
  14. Федеральный закон Российской Федерации от 12 апреля 2010 г. №61-ФЗ «Об обращении лекарственных средств».
  15. Приказ Министерства здравоохранения Российской Федерации от 01.04.2016 № 199н «Об утверждении Правил надлежащей лабораторной практики».
  16. ГОСТ Р 56701-2015. Лекарственные средства для медицинского применения. Руководство по планированию доклинических исследований безопасности с целью последующего проведения клинических исследований и регистрации лекарственных средств. М.: Стандартинформ; 2016.
  17. Межгосударственный стандарт ГОСТ 33044-2014. Принципы надлежащей лабораторной практики. М.: Стандартинформ; 2016.
  18. ГОСТ Р 56699-2015. ДКИ безопасности биотехнологических лекарственных препаратов. М.: Стандартинформ; 2016.
  19. ГОСТ Р 56700-2015. Доклинические фармакологические исследования безопасности. М.: Стандартинформ; 2016.
  20. Руководство по экспертизе лекарственных средств. Т. 1. М.: Гриф и К; 2014.
  21. Руководство по проведению доклинических исследований лекарственных средств. Ч. 2. М.: Гриф и К; 2012.
  22. Руководство по экспертизе лекарственных средств. Т. 3. М.: Гриф и К; 2014.
  23. Руководство по экспертизе лекарственных средств. Т. 4. М.: Гриф и К; 2014.
  24. Васильев А.Н., Ниязов Р.Р., Гавришина Е.В., Драницына М.А., Куличев Д.А. Проблемы планирования и проведения доклинических исследований в Российской Федерации. Ремедиум. 2017; 9: 2-14.
  25. Garlanda C., Dinarello C.A., Mantovani A. The Interleukin-1 Family: Back to the Future. Immunity. 2013; 39(6): 1003-18. doi: 10.1016/j.immuni.2013.11.010
  26. Schett G., Dayer J.M., Manger B. Interleukin 1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016; 12(1): 14-24. doi: 10.1038/nrrheum.2016.166
  27. Dinarello C.A., Simon A., Van der Meer JWM. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012; 11(8): 633-652. doi: 10.1038/nrd3800
  28. Dinarello C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011; 111(14): 3720-32. doi: 10.1182/blood-2010-07-273417
  29. Masuda A., Yoshida M., Shiomi H., Morita Y., Kutsumi H., Inokuchi H. at al. Role of Fc Receptors as a therapeutic target. Inflamm Allergy Drug Targets. 2009; 8(1): 80-6.
  30. Beck A., Reichert J.M. Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs. 2011; 3(5): 415-6. doi: 10.4161/mabs.3.5.17334
  31. Baker K., Qiao S.-W., Kuo T., Kobayashi K., Yoshida M., Lencer W.I., Blumberg R.S. Immune and non-immune functions of the (not so) neonatal Fc receptor. FcRn. Semin Immunopathol. 2009; 31: 223-6. doi: 10.1007/s00281-009-0160-9
  32. Levin D., Golding B., Strome S.E., Sauna Z.E. Fc fusion as a platform technology: potential for modulating immunogenicity. Trends Biotechnol. 2015; 33(1): 27-34. doi: 10.1016/j.tibtech.2014.11.001
  33. Giragossian C., Clark T., Piche-Nicholas N., Bowman C.J. Neonatal Fc receptor and its role in the absorption, distribution, metabolism and excretion of immunoglobulin G-based biotherapeutics. Curr Drug Metab. 2013; 14: 764-90.
  34. Baker K., Qiao S.-W., Kuo T., Kobayashi K., Yoshida M., Lencer W.I., Blumberg R.S. Immune and non-immune functions of the (not so) neonatal Fc receptor. FcRn. Semin Immunopathol. 2009; 31: 223-6. doi: 10.1007/s00281-009-0160-9
  35. Остроухова Т.Ю., Иванов В.А., Морозова Е.Л., Иванов Р.А. Исследование кросс-реактивности терапевтических препаратов на основе моноклональных антилел на тканях человека: основные подходы и методические приемы. БИОпрепараты. 2016; 16(4): 237-44
  36. Joy A. Cavagnaro. Preclinical safety evaluation of biopharmaceuticals. Hoboken: John Wiley & Sons, Inc.; 2008.
  37. Subramanyam M, Rinaldi N, Mertsching E, Hutto D. Selection of Relevant Species. In: Joy A. Cavagnaro, eds. Preclinical safety evaluation of biopharmaceuticals. Hoboken: John Wiley & Sons, Inc.; 2008; 181-207.
  38. Parvova I, Danchev N, Hristov E. Animal models of human diseases and their significance for clinical studies of new drugs. J Clin Med 2011; 4(1): 19-29.
  39. Wang P., Ren D., Chen Y., Jian M., Wang R., Wang Y.G. Effect of sodium alginate addition to resveratrol on acute gouty arthritis. Cell Physiol Biochemist. 2015; 36 (1): 201-7.
  40. Dos Santos R.M., Oliveira S.M., Silva C.R., Hoffmeister C., Ferreira J., Assreuy J. Anti-nociceptive and anti-edematogenic effects of glibenclamide in a model of acute gouty attack in rats. Inflamm Res. 2013; 62: 617-25.
  41. Pineda C., Fuentes-Gomez A.J., Hernandez-Diaz C., Zamudio-Cuevas Y., Fernandez-Torres J., Lopez-Macay A. et al. Animal model of acute gout reproduces the inflammatory and ultrasonographic joint changes of human gout. Arthrit Res Ther. 2015; 17(37): 1-9.
  42. Phelps P., McCarty D.J. Suppressive effects of indomethacin on crystal-induced inflammation in canine joints and on neutrophilic motility in vitro. JPET. 1967; 158(3): 546-553
  43. Schumacher H.R., Phelps P., Agudelo C.A. Urate crystal induced inflammation in dog joints: sequence of synovial changes. J Rheumatol. 1974; 1(1): 102-13.
  44. Amaral F.A., Bastos L.F., Oliveira T.H., Dias A.C., Oliveira V.L., Tavares L.D. et al. Transmembrane TNF-α is sufficient for articular inflammation and hypernociception in a mouse model of gout. Eur J Immunol. 2016; (46): 204-11.
  45. Moilanen L.J., Hamalainen M., Lentimaki L., Nieminen R.M., Moilanen E. Urate crystal induced inflammation and joint pain are reduced in Transient Receptor Potential Ankyrin 1 Deficient mice - potential role for Transient Receptor Potential Ankyrin1 in gout. Plos one. 2015; 10(2): 1-13.
  46. Reber L.L., Marichal T., Sokolove J., Starkl P., Gaudenzio N., Iwakura I. et al. Mast cell-derived IL-1β contributes to uric acid crystal-induced acute arthritis in mice. Arthrit Rheumat. 2014; 66(10): 2881-91.
  47. Vieira A.T., Macia L., Galvao I., Martins S.F., Canesso M.C., Amaral F.A. et al. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthrit Rheumat. 2015; 67(6): 1646-56.
  48. Yildirim O. Animal Models in Behçet’s Disease. Patholog Res Int. 2012; 2012: 1-8.
  49. Cori Y., Miyazawa S., Nishiyama S. Experimantal Behçet’s disease and ultrastructural X-ray microanalysis of pathological tissues. Journal of dermatology. 1979; 6(1): 31-7.
  50. Sohn S., Lutz M., Kwon H.J., Konwalinka G., Lee S., Schirmer M. Therapeutic effects of gemcitabine on cutaneous manifestations in an Adamantiades- Behçet’s disease-like mouse model. Experimental Dermatology. 2004; 13(10): 630-4.
  51. Islam S.M.S., Sohn S. HSV-induced systemic inflammation as an animal model for Behçet’s disease and therapeutic applicatios. Viruses. 2018; 10(9): 1-14.
  52. Chae J.J., Cho Y.H., Lee G.S., Cheng J., Liu P.P., Feigenbaum L. et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity. 2011; 34(5): 755-68.
  53. Hofmann S.R., Heymann M.C., Hermsdorf A., Roesen-Wolff A. Recent advances in Autoinflammatory disease and animal models. J Genet Syndr Ther. 2011.
  54. Chae J.J., Komarow H.D., Cheng J., Wood G., Raben N., Liu P.P. et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. 2003. Mol Cell; 11 (3): 591-604.
  55. Kanneganti A., Malireddi S.R.K., Saavedra P.H.V., Walle L.V., Gorp H.V., Kambara H. et al. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J Exp Med. 2018; 215(6): 1519-29.
  56. Alten R., Gram H., Joosten L.A. et al. The human anti-IL-1β monoclonal antibody ACZ 885 is effective in joint inflammation model in mice and in a proof-of-concept study in patients with rheumatoid arthritis. Arthrit Res Ther, 2008;10(3).
  57. Church L.D., McDermott M.F. Canakinumab, a fully human mAb against IL-1β for the potential treatment of inflammatory disorders. Curr Opin Mol Ther. 2009; 11(1): 1-10.
  58. Dhimolea E. Canakinumab, mAbs. 2010; 2(1): 3-13.
  59. National Centre for the Replacement, Refinement and Reduction of Animals in Research 2006. http://www.nc3rs.org.uk
  60. Директива 2010/63/EU Европейского парламента и совета Европейского Союза от 22 сентября 2010 года по охране животных, используемых в научных целях.
  61. Вольская Е. Оптимизация доклинических исследований: на пути к гуманным опытам. Ремедиум. 2016; 1-2: 6-12.

Copyright (c) 2018 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies