THE RESULTS OF SCANNING ELECTRONIC MICROSCOPY OF ULTRA-THIN ENDOKERATOTRANSPLANT FORMED BY FEMTOSECOND LASER ON PART OF ENDOTHELIUM


Cite item

Full Text

Abstract

Nowadays, the posterior keratoplasty is an operation of original choice in treatment of patients with pathology of endothelium. The purpose of study. To analyze, in ex vivo conditions and using scanning electronic microscopy technique, the quality of stromal surface of transplant formed by femtosecond laser on part of endothelium (invertedly). Material and methods. The series of scanning electronic microscopy of surface of stroma of cornea after femtodissection were applied to investigate effect of parameters of femtodissection and also impact of viscoelastic on quality of stromal surface. Six pairs of eyes of donors unfitted to keratoplasty were used. To form a transplant the femtosecond laser platform LDV Z6 (Ziemer, Switzerland) was applied.

About the authors

Oganes G. Oganesyan

The Helmholtz Moscow research institute of eyes diseases

Email: oftalmolog@mail.ru
doctor of medical sciences, leading researcher of the department of traumotology and reconstructive surgery of the Helmholtz Moscow research institute of eyes diseases, 105062, Moscow 105062, Moscow, Russian Federation

S. S Yakovleva

The Helmholtz Moscow research institute of eyes diseases

105062, Moscow, Russian Federation

A. E Baranchikov

The N.S. Kurnakov institute of general and inorganic chemistry

119991, Moscow, Russian Federation

V. K Ivanov

The N.S. Kurnakov institute of general and inorganic chemistry

119991, Moscow, Russian Federation

References

  1. Nieuwendaal C.P., Lapid-Gortzak R., van der Meulen I.J., Melles G.J. Posterior lamellar keratoplasty using descemetorhexis and organ cultured donor corneal tissue (Melles technique). Cornea. 2006; 25(8): 933-6.
  2. Price M.O., Giebel A.W., Fairchild K.M., Price F.W. Descemet’s membrane endothelial keratoplasty: prospective multicenter study of visual and refractive outcomes and endothelial survival. Ophthalmology. 2009; 116(12): 2361-8.
  3. Cheng Y.Y., Pels E., Nuijts R.M. Femtosecond laser assisted Descemet’s stripping endothelial keratoplasty. J. Cataract Refract. Surg. 2007; 33(1): 152-5.
  4. Chen E.S., Terry M.A., Shamie N. Descemet stripping automated endothelial keratoplasty: six-month results in a prospective study of 100 eyes. Cornea. 2008; 27(5): 514-20.
  5. Melles G.R., Wijdh R.H., Nieuwendaal C.P. A technique to excise the descemet membrane from a recipient cornea (descemetorhexis). Cornea. 2004; 23(3): 286-8.
  6. Trinh L., Saubaméa B., Auclin F. A new technique of endothelial graft: the femtosecond and excimer lasers-assisted endothelial keratoplasty (FELEK). Acta Ophthalmol. 2013; 91(6): 497-9.
  7. Jones Y.J., Goins K.M., Sutphin J.E., Mullins R., Skeie J.M. Comparison of the femtosecond laser (IntraLase) versus manual microkeratome (Moria ALTK) in dissection of the donor in endothelial keratoplasty: initial study in eye bank eyes. Cornea. 2008; 27(1): 88-93.
  8. Güell J.L., Velasco F., Roberts C., Sisquella M.T., Mahmoud A. Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis. J. Cataract Refract. Surg. 2005; 31(1): 115-9.
  9. Huang D., Arif M. Spot size and quality of scanning laser correction of higher-order wavefront aberrations. J. Cataract. Refract. Surg. 2002; 28(3): 407-16.
  10. Lim T., Yang S., Kim M.J., Tchah H. Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis. Am. J. Ophthalmol. 2006; 141(5): 833-9.
  11. Tran D.B., Sarayba M.A., Bor Z., Garufis C., Duh Y-J., Soltes C.R. Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes; potential impact on wavefront guided laser in situ keratomileusis. J. Cataract Refract. Surg. 2005; 31(1): 97-105.
  12. Vinciguerra P., Azzolini M., Airaghi P., Radice P., De Molfetta V. Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes. J. Refract. Surg. 1998; 14(2 Suppl.): 199-203.
  13. Sarayba M.A., Ignacio T.S., Binder P.S., Tran D.B. Comparative study of stromal bed quality by using mechanical, IntraLase femtosecond laser 15- and 30-kHz microkeratomes. Cornea. 2007; 26(4): 446-51.
  14. Sarayba M.A., Maguen E., Salz J., Rabinowitz Y., Ignacio T.S. Femtosecond laser keratome creation of partial thickness donor corneal buttons for lamellar keratoplasty. J. Refract. Surg. 2007; 23(1): 58-65.
  15. Nuzzo V., Aptel F., Savoldelli M., Plamann K., Peyrot D., Deloison F., et al. Histologic and ultrastructural characterization of corneal femtosecond laser trephination. Cornea. 2009; 28(8): 908-13.
  16. Terry M.A., Ousley P.J., Will B. A practical femtosecond laser procedure for DLEK endothelial transplantation; cadaver eye histology and topography. Cornea. 2005; 24(4): 453-9.
  17. Kymionis G.D., Kontadakis G.A., Naoumidi I., Kankariya V.P., Panagopoulou S., Manousaki A. Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome. Br. J. Ophthalmol. 2014; 98(1): 133-7.
  18. Ziebarth N.M., Dias J., Hürmeric V. Quality of corneal lamellar cuts quantified using atomic force microscopy. J. Cataract Refract. Surg. 2013; 39(5): 110-7.
  19. Soong H.K., Mian S., Abbasi O., Juhasz T. Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes. Ophthalmology. 2005; 112(1): 44-9.
  20. Zhang C., Bald M., Tang M. Interface quality of different corneal lamellar-cut depths for femtosecond laser-assisted lamellar anterior keratoplasty. J. Cataract Refract. Surg. 2015; 41(4): 827-35.
  21. Lombardo M., De Santo M.P., Lombardo G. Surface quality of femtosecond dissected posterior human corneal stroma investigated with atomic force microscopy. Cornea. 2012; 31(12): 1369-75.
  22. Sarayba M.A., Maguen E., Salz J. Femtosecond laser keratome creation of partial thickness donor corneal buttons for lamellar keratoplasty. J. Refract. Surg. 2007; 23(1): 58-65.
  23. Seitz B., Langenbucher A., Hofmann-Rummelt C. Non mechanical posterior lamellar keratoplasty using the femtosecond laser (femto-PLAK) for corneal endothelial decompensation. Am. J. Ophthalmol. 2003; 136(4): 769-72.
  24. Terry M.A., Ousley P.J., Will B. A practical femtosecond laser procedure for DLEK endothelial transplantation; cadaver eye histology and topography. Cornea. 2005; 24(4): 453-9.
  25. Bergmanson J.P.G., Horne J., Doughty M.J. Assessment of the number of lamellae in the central region of the normal human corneal stroma at the resolution of the transmission electron microscope. Eye Contact Lens. 2005; 31(6): 281-7.
  26. Aptel F., Olivier N., Deniset-Besseau A. Multimodal nonlinear imaging of the human cornea. Invest. Ophthalmol. Vis. Sci. 2010; 51(5): 2459-65.
  27. Soong H.K., Mian S., Abbasi O., Juhasz T. Femtosecond laser assisted posterior lamellar keratoplasty. Initial studies of surgical technique in eye bank eyes. Ophthalmology. 2005; 112(1): 44-9.
  28. Zhang C., Bald M., Tang M. Interface quality of different corneal lamellar-cut depths for femtosecond laser-assisted lamellar anterior keratoplasty. J. Cataract Refract. Surg. 2015; 41(4): 827-35.
  29. Погорелова С.С., Оганесян О.Г., Ченцова Е.В. Среднесрочные биологические и функциональные результаты эндотелиальной кератопластики (DSEK) с формированием трансплантата фемтосекундным лазером со стороны эндотелия. Российский медицинский журнал. 2015; 21(4): 9-12
  30. Sikder S., Snyder R.W. Femtosecond laser preparation of donor tissue from the endothelial side. Cornea. 2006; 25(4): 416-22

Copyright (c) 2018 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies