THE SYSTEMIC PSYCHO-NEUROLOGY: MAIN FACTORS EFFECTING CONNECTOME


Cite item

Full Text

Abstract

The review considers actual aspects of structural and functional functioning of central nervous system. The significance of concept of connectome is emphasized. The constructing of connectome is based on the results of functional magnetic resonance imaging and consists in selecting of particular cerebral regions (areas), evaluating relationships between these regions and minute analysis of network of these relationships. At that, nowadays in neurosciences even more significance is attached not to functional segregation (specialization of one or another areas of brain) but functional integration, including synaptic level. The global principle of functioning of the brain is emphasized - goal achievement (information transfer) with minimal energy spending. The factors impacting on functioning of connectome are considered. The alteration of this structure during aging is analyzed. The data concerning individual and gender differences in organization of connectome are presented. The conclusion is made that obtained actual data permits to establish such a separate direction of neurosciences as systemic psycho-neurology combining clinical disciplines, methods of neurovisualization and mathematical methods. Exactly such a comprehensive approach opens new possibilities in studying functioning of so complicated organized system as brain is.

About the authors

Igor V. Damulin

The I.M. Sechenov first Moscow state medical university of Minzdrav of Russia; The Moscow clinical research center of the Moscow health department

Email: damulin@mmascience.ru
doctor of medical sciences, professor of the chair of diseases of nervous system and neurosurgery the I.M. Sechenov first Moscow state medical university of Minzdrav of Russia, 119992, Moscow, Russian Federation; leading researcher the Moscow clinical research center of the Moscow health department, 111123, Moscow, Russian Federation 119992, Moscow, Russian Federation; 111123, Moscow, Russian Federation

References

  1. Haken H. The Brain as a Synergetic and Physical System. In: Pelster A., Wunner G., eds. Selforganization in Complex Systems: The Past, Present, and Future of Synergetics. Proceedings of the International Symposium, Hanse Institute of Advanced Studies, 2012. Delmenhorst: Springer; 2016: 147-63
  2. Mears D., Pollard H.B. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease. J. Neurosci. Res. 2016; 94(6): 590-605
  3. Collin G., van den Heuvel M.P. The ontogeny of the human connectome. Neuroscientist. 2013; 19(6): 616-28
  4. Дамулин И.В. Особенности структурной и функциональной организации головного мозга. Журнал неврологии и психиатрии им. С.С.Корсакова. 2016; 116(11): 163-8
  5. Bell P.T., Shine J.M. Estimating large-scale network convergence in the human functional connectome. Brain Connect. 2015; 5(9): 565-74.
  6. Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009; 10(3): 186-98.
  7. Petersen S.E., Sporns O. Brain networks and cognitive architectures. Neuron. 2015; 88(1): 207-19.
  8. Van den Heuvel M.P., Sporns O. Network hubs in the human brain. Trends Cogn. Sci. 2013; 17(12): 683-96.
  9. Van den Heuvel M.P., Bullmore E.T., Sporns O. Comparative connectomics. Trends Cogn. Sci. 2016; 20(5): 345-61.
  10. Friston K.J. Functional and effective connectivity: a review. Brain Connect. 2011; 1(1): 13-36.
  11. Snyder A.Z. Intrinsic Brain Activity and Resting State Networks. In: Pfaff D.W., Volkow N.D., eds. Neuroscience in the 21st Century. From Basic to Clinical. 2nd edition. New York: Springer; 2016: 1625-76.
  12. Gurcan O. Effective connectivity at synaptic level in humans: a review and future prospects. Biol. Cybern. 2014; 108(6): 713-33.
  13. Edlow B.L., McNab J.A., Witzel T., Kinney H.C. The structural connectome of the human central homeostatic network. Brain Connect. 2016; 6(3): 187-200.
  14. Meier J., Tewarie P., Hillebrand A., Douw L., van Dijk B.W., Stufflebeam S.M., et al. A Mapping between structural and functional brain networks. Brain Connect. 2016; 6(4): 298-311.
  15. Rehme A.K., Eickhoff S.B., Grefkes C. State-dependent differences between functional and effective connectivity of the human cortical motor system. Neuroimage. 2013; 67: 237-46.
  16. Bringmann L.F., Scholte H.S., Waldorp L.J. Matching structural, effective, and functional connectivity: a comparison between structural equation modeling and ancestral graphs. Brain Connect. 2013; 3(4): 375-85.
  17. Goulas A., Schaefer A., Margulies D.S. The strength of weak connections in the macaque cortico-cortical network. Brain Struct. Funct. 2014; 220(5): 2939-51.
  18. Santarnecchi E., Galli G., Polizzotto N.R., Rossi A., Rossi S. Efficiency of weak brain connections support general cognitive functioning. Human Brain Mapping. 2014; 35(9): 4566-82.
  19. Hilger K., Ekman M., Fiebach C.J., Basten U. Efficient hubs in the intelligent brain: Nodal efficiency of hub regions in the salience network is associated with general intelligence. Intelligence. 2017; 60: 10-25.
  20. Mueller S., Wang D., Fox M.D., Yeo B.T.T., Sepulcre J., Sabuncu M.R., et al. Individual variability in functional connectivity architecture of the human brain. Neuron. 2013; 77(3): 586-95.
  21. Vaidya C.J., Gordon E.M. Phenotypic variability in resting-state functional connectivity: current status. Brain Connect. 2013; 3(2): 99-120.
  22. Scheinost D., Tokoglu F., Shen X., Finn E.S., Noble S., Papademetris X., et al. Fluctuations in global brain activity are associated with changes in whole-brain connectivity of functional networks. IEEE Trans. Biomed. Eng. 2016; 63(12): 2540-9.
  23. Pouratian N., Bookheimer S.Y. Clinical challenges of fMRI. In: Faro S.H., Mohamed F.B., eds. BOLD fMRI: A Guide to Functional Imaging for Neuroscientists. New York: Springer; 2010: 93-116.
  24. Tak S., Polimeni J.R., Wang D.J.J., Yan L., Chen J.J. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature. Brain Connect. 2015; 5(3): 137-46.
  25. Mak L.E., Minuzzi L., MacQueen G., Hall G., Kennedy S.H., Milev R. The default mode network in healthy individuals: a systematic review and meta-analysis. Brain Connect. 2017; 7(1): 25-33.
  26. Zhou X., Wu T., Yu J., Lei X. Sleep deprivation makes the young brain resemble the elderly brain: a large-scale brain networks study. Brain Connect. 2017; 7(1): 58-68.
  27. Martella D., Casagrande M., Lupianez J. Alerting, orienting and executive control: the effects of sleep deprivation on attentional networks. Exp. Brain Res. 2011; 210(1): 81-9.
  28. Friedman N.P., Miyake A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex. 2017; 86: 186-204.
  29. Connolly J., McNulty J.P., Boran L., Roche R.A.P., Delany D., Bokde A.L.W. Identification of resting state networks involved in executive function. Brain Connect. 2016; 6(5): 365-74.
  30. Caulfield M.D., Zhu D.C., McAuley J.D., Servatius R.J. Individual differences in resting-state functional connectivity with the executive network: support for a cerebellar role in anxiety vulnerability. Brain Struct. Funct. 2015; 221(6): 3081-93.
  31. Liu H., Fan G., Xu K., Wang F. Changes in cerebellar functional connectivity and anatomical connectivity in schizophrenia: A combined resting-state functional MRI and diffusion tensor imaging study. J. Magn. Reson. Imaging. 2011; 34(6): 1430-8.
  32. Rack-Gomer A.L., Liau J., Liu T.T. Caffeine reduces resting-state BOLD functional connectivity in the motor cortex. Neuroimage. 2009; 46(1): 56-63.
  33. Wu W.C., Lien S.H., Chang J.H., Yang S.C. Caffeine alters resting-state functional connectivity measured by blood oxygenation level-dependent MRI. NMR Biomed. 2014; 27(4): 444-52.
  34. Carbonell F., Bellec P., Shmuel A. Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks. Brain Connect. 2011; 1(6): 496-510.
  35. Murphy K., Birn R.M., Handwerker D.A., Jones T.B., Bandettini P.A. The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage. 2009; 44(3): 893-905.
  36. Wu J.T., Wu H.Z., Yan C.G., Chen W.X., Zhang H.Y., He Y., et al. Aging-related changes in the default mode network and its anti-correlated networks: A resting-state fMRI study. Neurosci. Lett. 2011; 504(1): 62-7.
  37. Li J.M., Bentley W.J., Snyder L.H. Functional connectivity arises from a slow rhythmic mechanism. Proc. Natl. Acad. Sci. U. S. A. 2015; 112(19): E2527-35.
  38. Stevens W.D., Spreng R.N. Resting-state functional connectivity MRI reveals active processes central to cognition. Wiley Interdiscip. Rev. Cogn. Sci. 2014; 5(2): 233-45.
  39. Bob P. Chaos, cognition and disordered brain. Act. Nerv. Super. (Praha). 2008; 50(4): 114-7.
  40. Chen Y., Parrish T.B. Caffeine dose effect on activation-induced BOLD and CBF responses. Neuroimage. 2009; 46(3): 577-83.
  41. Sours C., Alon G., Roys S., Gullapalli R.P. Modulation of resting state functional connectivity of the motor network by transcranial pulsed current stimulation. Brain Connect. 2014; 4(3): 157-65.
  42. Ng T.P., Lim M.L., Niti M., Collinson S. Long-term digital mobile phone use and cognitive decline in the elderly. Bioelectromagnetics. 2011; 33(2): 176-85.
  43. Kwon M.S., Hamalainen H. Effects of mobile phone electromagnetic fields: Critical evaluation of behavioral and neurophysiological studies. Bioelectromagnetics. 2010. 32(4): 253-72.
  44. Nittby H., Grafstrom G., Tian D.P., Malmgren L., Brun A., Persson B.R.R., et al. Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics. 2008; 29(3): 219-232.
  45. Nittby H., Brun A., Eberhardt J., Malmgren L., Persson B.R.R., Salford L.G. Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology. 2009; 16(2-3): 103-12.
  46. Khan M. Adverse effects of excessive mobile phone use. Int. J. Occup. Med. Environ. Health. 2008; 21(4): 289-93.
  47. Derias E.M.B., Stefanis P., Drakeley A., Gazvani R., Lewis-Jones D.I. Growing concern over the safety of using mobile phones and male fertility. Arch. Androl. 2006; 52(1): 9-14.
  48. Fejes I., Zavaczki Z., Koloszar S., Szollosi J., Daru J, Kovacs L., Pal A. Hypothesis: safety of using mobile phones on male fertility. Arch. Androl. 2007; 53(2): 105-6.
  49. Ramezani M., Abolmaesumi P., Marble K., Trang H., Johnsrude I. Fusion analysis of functional MRI data for classification of individuals based on patterns of activation. Brain Imaging Behav. 2014; 9(2): 149-61.
  50. Finn E.S., Shen X., Scheinost D., Rosenberg M.D., Huang J., Chun M.M., et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 2015; 18(11): 1664-71.
  51. Hahn A., Kranz G.S., Sladky R., Ganger S., Windischberger C., Kasper S., et al. Individual diversity of functional brain network economy. Brain Connect. 2015; 5(3): 156-65.
  52. Reineberg A.E., Banich M.T. Functional connectivity at rest is sensitive to individual differences in executive function: A network analysis. Human Brain Mapp. 2016; 37(8): 2959-75.
  53. Hearne L.J., Mattingley J.B., Cocchi L. Functional brain networks related to individual differences in human intelligence at rest. Sci. Rep. 2016; 6: 32328.
  54. Baldassarre A., Lewis C.M., Committeri G., Snyder A.Z., Romani G.L., Corbetta M. Individual variability in functional connectivity predicts performance of a perceptual task. Proc. Natl. Acad. Sci. U. S. A. 2012; 109(9): 3516-21.
  55. Hedman A.M., van Haren N.E.M., Schnack H.G., Kahn R.S., Hulshoff Pol H.E. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Human Brain Mapp. 2011; 33(8): 1987-2002.
  56. Kohama S.G., Rosene D.L., Sherman L.S. Age-related changes in human and non-human primate white matter: from myelination disturbances to cognitive decline. AGE. 2011; 34(5): 1093-110.
  57. Meunier D., Achard S., Morcom A., Bullmore E. Age-related changes in modular organization of human brain functional networks. Neuroimage. 2009; 44(3): 715-23.
  58. Zhao T., Cao M., Niu H., Zuo X.N., Evans A., He Y., et al. Age-related changes in the topological organization of the white matter structural connectome across the human lifespan. Human Brain Mapp. 2015; 36(10): 3777-92.
  59. Grabowska A. Sex on the brain: Are gender-dependent structural and functional differences associated with behavior? J. Neurosci. Res. 2016; 95(1-2): 200-12.
  60. Pletzer B., Kronbichler M., Aichhorn M., Bergmann J., Ladurner G., Kerschbaum H.H. Menstrual cycle and hormonal contraceptive use modulate human brain structure. Brain Res. 2010; 1348: 55-62.
  61. Scheinost D., Finn E.S., Tokoglu F., Shen X., Papademetris X., Hampson M., et al. Sex differences in normal age trajectories of functional brain networks. Human Brain Mapping. 2014; 36(4): 1524-35.
  62. Tomasi D., Volkow N.D. Gender differences in brain functional connectivity density. Human Brain Mapp. 2011; 33(4): 849-60.
  63. Weiss E.M., Kemmler G., Deisenhammer E.A., Fleischhacker W.W., Delazer M. Sex differences in cognitive functions. Pers. Individ. Dif. 2003; 35(4): 863-75.
  64. Gordon H.W., Kravetz S. The influence of gender, handedness, and performance level on specialized cognitive functioning. Brain Cogn. 1991; 15(1): 37-61.
  65. Lumley M.A., Sielky K. Alexithymia, gender, and hemispheric functioning. Compr. Psychiatry. 2000; 41(5): 352-9.
  66. Zhang C., Cahill N.D., Arbabshirani M.R., White T., Baum S.A., Michael A.M. Sex and age effects of functional connectivity in early adulthood. Brain Connect. 2016; 6(9): 700-13.
  67. Engman J., Linnman C., Van Dijk K.R.A., Milad M.R. Amygdala subnuclei resting-state functional connectivity sex and estrogen differences. Psychoneuroendocrinology. 2016; 63: 34-42.
  68. Ebner N.C., Chen H., Porges E., Lin T., Fischer H., Feifel D., et al. Oxytocin’s effect on resting-state functional connectivity varies by age and sex. Psychoneuroendocrinology. 2016; 69: 50-9.
  69. Fan Y., Herrera-Melendez A.L., Pestke K., Feeser M., Aust S., Otte C., et al. Early life stress modulates amygdala-prefrontal functional connectivity: Implications for oxytocin effects. Human Brain Mapp. 2014; 35(10): 5328-39.
  70. Bethlehem R.A.I., van Honk J., Auyeung B., Baron-Cohen S. Oxytocin, brain physiology, and functional connectivity: A review of intranasal oxytocin fMRI studies. Psychoneuroendocrinology. 2013; 38(7): 962-74.
  71. Febo M., Ferris C.F. Oxytocin and vasopressin modulation of the neural correlates of motivation and emotion: results from functional MRI studies in awake rats. Brain Res. 2014; 1580: 8-21.
  72. Kilpatrick L.A., Zald D.H., Pardo J.V., Cahill L.F. Sex-related differences in amygdala functional connectivity during resting conditions. Neuroimage. 2006; 30(2): 452-61.
  73. Petersen N., Kilpatrick L.A., Goharzad A., Cahill L. Oral contraceptive pill use and menstrual cycle phase are associated with altered resting state functional connectivity. Neuroimage. 2014; 90: 24-32.
  74. Pletzer B., Crone J.S., Kronbichler M., Kerschbaum H. Menstrual cycle and hormonal contraceptive-dependent changes in intrinsic connectivity of resting-state brain networks correspond to behavioral changes due to hormonal status. Brain Connect. 2016; 6(7): 572-85.
  75. Pletzer B., Kronbichler M., Nuerk H.-C., Kerschbaum H. Hormonal contraceptives masculinize brain activation patterns in the absence of behavioral changes in two numerical tasks. Brain Res. 2014; 1543: 128-42.
  76. De Bondt T., Smeets D., Pullens P., Van Hecke W., Jacquemyn Y., Parizel P.M. Stability of resting state networks in the female brain during hormonal changes and their relation to premenstrual symptoms. Brain Res. 2015; 1624: 275-85.
  77. Uddin L.Q. Salience Network of the Human Brain. Amsterdam: Elsevier Inc.; 2017.

Copyright (c) 2017 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies