Epidemiology and mechanisms of antifungal resistance in Aspergillus : а review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Invasive mycoses have become an increasingly serious global public health concern, particularly in immunocompromised patients. Species of the genus Aspergillus—most notably Aspergillus fumigatus—are among the principal causative pathogens. Despite advances in antifungal therapy, especially azole-based agents, the spread of azole-resistant Aspergillus spp. is emerging as a major clinical threat.

This review summarizes current data on the prevalence of drug-resistant Aspergillus spp. and describes the resistance mechanisms identified to date. The primary focus is on publications from the last decade; however, key foundational studies from earlier periods were also considered. The scientific data search was performed in eLIBRARY.RU, PubMed, Google Scholar, and Wally.

The analysis demonstrated a substantial increase in invasive aspergillosis cases caused by resistant Aspergillus strains. The main mechanisms of resistance include mutations in the cyp51 gene and hyperactivation of efflux transport proteins. Resistant isolates have been reported in Europe, Asia, Africa, and the Americas.

These findings may be used to inform guidelines aimed at improving epidemiologic surveillance of antifungal resistance in Aspergillus. Priority areas for future research should include development of antifungal agents, improved diagnostic assays for rapid detection of resistant strains, and optimization of treatment regimens. There is an urgent need for greater clinician awareness regarding the risks associated with azole use and tighter antifungal resistance control measures.

About the authors

Anastasia V. Avtonomova

Research Institute for the Search of New Antibiotics named after G.F. Gause

Author for correspondence.
Email: nomova@yandex.ru
ORCID iD: 0000-0001-5098-5379
SPIN-code: 4409-8108

Cand. Sci. (Biology)

Russian Federation, Moscow

Olga V. Kisil

Research Institute for the Search of New Antibiotics named after G.F. Gause

Email: olvv@mail.ru
ORCID iD: 0000-0003-4799-1318
SPIN-code: 1153-8414

Cand. Sci. (Chemistry)

Russian Federation, Moscow

References

  1. Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis. 2024;24(7):e428–e438. doi: 10.1016/S1473-3099(23)00692-8 EDN: SIXIIN
  2. Khostelidi SN, Kozlova OP, Shadrivova OV, et al. Invasive mycoses in intensive care units (analysis of registry data and literature review). Problems in Medical Mycology. 2024;26(1):3–21. doi: 10.24412/1999-6780-2024-1-3-21 EDN: DRLDJW
  3. Camps SM, van der Linden JW, Li Y, et al. Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: a case study and review of the literature. Antimicrob Agents Chemother. 2012;56(1):10–16. doi: 10.1128/AAC.05088-11
  4. Sachs MK, Paluzzi RG, Moore JH Jr, et al. Amphotericin-resistant aspergillus osteomyelitis controlled by itraconazole. Lancet. 1990;335(8703):1475. doi: 10.1016/0140-6736(90)91513-a
  5. Dermoumi H. In vitro susceptibility of fungal isolates of clinically important specimens to itraconazole, fluconazole and amphotericin B. Chemotherapy. 1994;40(2):92–98. doi: 10.1159/000239178
  6. Denning DW, Venkateswarlu K, Oakley KL, et al. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 1997;41(6):1364–1368. doi: 10.1128/AAC.41.6.1364
  7. Gardiner RE, Souteropoulos P, Park S, Perlin DS. Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. Med Mycol. 2005;43 Suppl. 1:S299–S305. doi: 10.1080/13693780400029023
  8. Beernaert LA, Pasmans F, Van Waeyenberghe L, et al. Avian Aspergillus fumigatus strains resistant to both itraconazole and voriconazole. Antimicrob Agents Chemother. 2009;53(5):2199–2201. doi: 10.1128/AAC.01492-08
  9. Jiménez-Ortigosa C, Moore C, Denning DW, Perlin DS. Emergence of Echinocandin resistance due to a point mutation in the fks1 gene of Aspergillus fumigatus in a patient with chronic pulmonary aspergillosis. Antimicrob Agents Chemother. 2017;61(12):e01277–217. doi: 10.1128/AAC.01277-17 EDN: YHZUAV
  10. Snelders E, Camps SM, Karawajczyk A, et al. Genotype-phenotype complexity of the TR46/Y121F/T289A cyp51A azole resistance mechanism in Aspergillus fumigatus. Fungal Genet Biol. 2015;82:129–135. doi: 10.1016/j.fgb.2015.06.001
  11. Houšť J, Spížek J, Havlíček V. Antifungal drugs. Metabolites. 2020;10(3):106. doi: 10.3390/metabo10030106 EDN: WARRSL
  12. Cowen LE. Predicting the emergence of resistance to antifungal drugs. FEMS Microbiol Lett. 2001;204(1):1–7. doi: 10.1111/j.1574-6968.2001.tb10853.x EDN: ASAAVP
  13. Morogovsky A, Handelman M, Abou Kandil A, et al. Horizontal gene transfer of triazole resistance in Aspergillus fumigatus. Microbiol Spectr. 2022;10(3):e0111222. doi: 10.1128/spectrum.01112-22 EDN: EZTVUV
  14. Lelièvre L, Groh M, Angebault C, et al. Azole resistant Aspergillus fumigatus: an emerging problem. Med Mal Infect. 2013;43(4):139–145. doi: 10.1016/j.medmal.2013.02.010
  15. De Francesco MA. Drug-Resistant Aspergillus spp.: A literature review of its resistance mechanisms and its prevalence in Europe. Pathogens. 2023;12(11):1305. doi: 10.3390/pathogens12111305 EDN: SZHEKG
  16. Babič MN, Gunde-Cimerman N, Vargha M, et al. Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International Journal of Environmental Research and Public Health. 2017;14(6):636. doi: 10.3390/ijerph14060636 EDN: YHWBIA
  17. Panackal AA, Li H, Kontoyiannis DP, et al. Geoclimatic influences on invasive aspergillosis after hematopoietic stem cell transplantation. Clin Infect Dis. 2010;50(12):1588–1597. doi: 10.1086/652761
  18. Chadeganipour M, Nilipour S, Ahmadi G. Study of onychomycosis in Isfahan, Iran. Mycoses. 2010;53(2):153–157. doi: 10.1111/j.1439-0507.2008.01679.x
  19. Järv H, Naaber P, Kaur S, et al. Toenail onychomycosis in Estonia. Mycoses. 2004;47(1-2):57–61. doi: 10.1046/j.1439-0507.2003.00947.x EDN: FMCMEH
  20. Bagirova NS. Invasive fungal infections: revision of definitions, new in diagnostics based on data EORTC/MSGERC. Malignant Tumors. 2020;10(3s1):39–48. (In Russ.) doi: 10.18027/2224-5057-2019-10-3s1-39-48 EDN: TYEYWI
  21. Martynova AV, Pavlova OS, Yusupova EP. Epidemiological analysis of systemic mycoses in COVID-19. Medical Council. 2023;(13):326–331. doi: 10.21518/ms2023-178 EDN: HFHJFT
  22. Verweij PE, Chowdhary A, Melchers WJ, Meis JF. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis. 2016;62(3):362–368. doi: 10.1093/cid/civ885 EDN: WPEBGB
  23. Tissot F, Agrawal S, Pagano L, et al. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica. 2017;102(3):433–444. doi: 10.3324/haematol.2016.152900
  24. Verweij PE, Ananda-Rajah M, Andes D, et al. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist Updat. 2015;21-22:30–40. doi: 10.1016/j.drup.2015.08.001 EDN: VEWYWV
  25. Patterson TF, Thompson GR 3rd, Denning DW, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63(4):e1–e60. doi: 10.1093/cid/ciw326
  26. Pérez-Cantero A, López-Fernández L, Guarro J, Capilla J. Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents. 2020;55(1):105807. doi: 10.1016/j.ijantimicag.2019.09.011 EDN: HABXVD
  27. Hargrove TY, Wawrzak Z, Lamb DC, et al. Structure-functional characterization of cytochrome P450 sterol 14α-demethylase (CYP51B) from Aspergillus fumigatus and molecular basis for the development of antifungal drugs. J Biol Chem. 2015;290(39):23916–23934. doi: 10.1074/jbc.M115.677310 EDN: XYREAV
  28. Lucio J, Gonzalez-Jimenez I, Rivero-Menendez O, et al. Point mutations in the 14-α sterol demethylase Cyp51A or Cyp51C could contribute to azole resistance in Aspergillus flavus. Genes (Basel). 2020;11(10):1217. doi: 10.3390/genes11101217 EDN: TXHHNR
  29. Hawkins NJ, Cools HJ, Sierotzki H, et al. Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol Biol Evol. 2014;31(7):1793–1802. doi: 10.1093/molbev/msu134
  30. Sergeev AYu, Sergeev YuV, Klyasova GA, et al. Fungal infections. Moscow: Izdatel'stvo BINOM. Laboratoriya znanij; 2008. (In Russ.) EDN: QLQZLZ
  31. Howard SJ, Cerar D, Anderson MJ, et al. Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009;15(7):1068–1076. doi: 10.3201/eid1507.090043
  32. van der Linden JW, Camps SM, Kampinga GA, et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis. 2013;57(4):513–520. doi: 10.1093/cid/cit320
  33. Mellado E, Garcia-Effron G, Alcázar-Fuoli L, et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother. 2007;51(6):1897–1904. doi: 10.1128/AAC.01092-06
  34. Bueid A, Howard SJ, Moore CB, et al. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J Antimicrob Chemother. 2010;65(10):2116–2118. doi: 10.1093/jac/dkq279
  35. Perlin MH, Andrews J, Toh SS. Essential letters in the fungal alphabet: ABC and MFS transporters and their roles in survival and pathogenicity. Adv Genet. 2014;85:201–253. doi: 10.1016/B978-0-12-800271-1.00004-4
  36. Hokken MWJ, Zoll J, Coolen JPM, et al. Phenotypic plasticity and the evolution of azole resistance in Aspergillus fumigatus; an expression profile of clinical isolates upon exposure to itraconazole. BMC Genomics. 2019;20(1):28. doi: 10.1186/s12864-018-5255-z EDN: XZCGTW
  37. Gsaller F, Hortschansky P, Furukawa T, et al. Sterol biosynthesis and azole tolerance is governed by the opposing actions of SrbA and the CCAAT binding complex. PLoS Pathog. 2016;12(12):e1006106. doi: 10.1371/journal.ppat.1006106 Corrected and republished from: PLoS Pathog. 2016;12(7):e1005775. doi: 10.1371/journal.ppat.1005775
  38. Schrettl M, Beckmann N, Varga J, et al. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog. 2010;6(9):e1001124. doi: 10.1371/journal.ppat.1001124 EDN: MOWFWA
  39. Chung D, Barker BM, Carey CC, et al. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog. 2014;10(11):e1004487. doi: 10.1371/journal.ppat.1004487
  40. Hagiwara D, Miura D, Shimizu K, et al. A novel Zn2-Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of Aspergillus fumigatus by co-regulating cyp51A and cdr1B expressions. PLoS Pathog. 2017;13(1):e1006096. doi: 10.1371/journal.ppat.1006096 EDN: YWSUXR
  41. Du W, Zhai P, Wang T, et al. The C2H2 transcription factor SltA contributes to azole resistance by coregulating the expression of the drug target Erg11A and the drug efflux pump Mdr1 in Aspergillus fumigatus. Antimicrob Agents Chemother. 2021;65(4):e01839–820. doi: 10.1128/AAC.01839-20 EDN: NPSGYH
  42. Furukawa T, van Rhijn N, Fraczek M, et al. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat Commun. 2020;11(1):427. doi: 10.1038/s41467-019-14191-1 EDN: CRQXBA
  43. Yang G, Shi W, He W, et al. The mitochondrial protein Bcs1A regulates antifungal drug tolerance by affecting efflux pump expression in the filamentous pathogenic fungus Aspergillus fumigatus. Microbiol Spectr. 2024;12(10):e0117224. doi: 10.1128/spectrum.01172-24 EDN: OPZDHV
  44. Kaur S, Singh S. Biofilm formation by Aspergillus fumigatus. Med Mycol. 2014;52(1):2–9. doi: 10.3109/13693786.2013.819592
  45. Beauvais A, Fontaine T, Aimanianda V, Latgé JP. Aspergillus cell wall and biofilm. Mycopathologia. 2014;178(5-6):371–377. doi: 10.1007/s11046-014-9766-0 EDN: BZUWPZ
  46. Rajendran R, Mowat E, McCulloch E, et al. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob Agents Chemother. 2011;55(5):2092–2097. doi: 10.1128/AAC.01189-10
  47. Tashiro M, Izumikawa K, Hirano K, et al. Correlation between triazole treatment history and susceptibility in clinically isolated Aspergillus fumigatus. Antimicrob Agents Chemother. 2012;56(9):4870–4875. doi: 10.1128/AAC.00514-12
  48. Fakhim H, Badali H, Dannaoui E, et al. Trends in the prevalence of amphotericin B-resistance (AmBR) among clinical isolates of Aspergillus species. J Mycol Med. 2022;32(4):101310. doi: 10.1016/j.mycmed.2022.101310 EDN: UJHYAS
  49. Shchekotikhin AE, Olsufieva EN, Yankovskaya VS. Antibiotics and related compounds. Moscow: Laboratoriya znanij; 2022. (In Russ.)
  50. de Kruijff B, Demel RA. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. 3. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta. 1974;339(1):57–70. doi: 10.1016/0005-2736(74)90332-0 EDN: XRZTDX
  51. Gray KC, Palacios DS, Dailey I, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A. 2012;109(7):2234–2239. doi: 10.1073/pnas.1117280109 EDN: XZJOUM
  52. Jukic E, Blatzer M, Posch W, et al. Oxidative stress response tips the balance in Aspergillus terreus amphotericin B resistance. Antimicrob Agents Chemother. 2017;61(10):e00670–17. doi: 10.1128/AAC.00670-17 EDN: YJWJWW
  53. Reichert-Lima F, Lyra L, Pontes L, et al. Surveillance for azoles resistance in Aspergillus spp. Highlights a high number of amphotericin B-resistant isolates. Mycoses. 2018;61(6):360–365. doi: 10.1111/myc.12759
  54. Vahedi Shahandashti R, Lass-Flörl C. Antifungal resistance in Aspergillus terreus: A current scenario. Fungal Genet Biol. 2019;131:103247. doi: 10.1016/j.fgb.2019.103247 EDN: ZZMAPZ
  55. Zhao Y, Perez WB, Jiménez-Ortigosa C, et al. CD101: a novel long-acting echinocandin. Cell Microbiol. 2016;18(9):1308–1316. doi: 10.1111/cmi.12640 EDN: WSHQPV
  56. Li Y, Lan N, Xu L, Yue Q. Biosynthesis of pneumocandin lipopeptides and perspectives for its production and related echinocandins. Appl Microbiol Biotechnol. 2018;102(23):9881–9891. doi: 10.1007/s00253-018-9382-x EDN: HZUPZA
  57. Jiang K, Luo P, Wang X, Lu L. Insight into advances for the biosynthetic progress of fermented echinocandins of antifungals. Microb Biotechnol. 2024;17(1):e14359. doi: 10.1111/1751-7915.14359 EDN: UONQUZ
  58. Veselov AV. The current place of echinocandins in the treatment and prophylaxis of invasive fungal infections. Clinical Microbiology and Antimicrobial Chemotherapy. 2020;22(3):197–209. doi: 10.36488/cmac.2020.3.197-209 EDN: SYYTBM
  59. Curto MÁ, Butassi E, Ribas JC, et al. Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomedicine. 2021;88:153556. doi: 10.1016/j.phymed.2021.153556 EDN: HXEEYQ
  60. E Silva AP, Miranda IM, Branco J, et al. FKS1 mutation associated with decreased echinocandin susceptibility of Aspergillus fumigatus following anidulafungin exposure. Sci Rep. 2020;10(1):11976. doi: 10.1038/s41598-020-68706-8 EDN: TLXNEU

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).