Bronchial asthma and obesity: features of systemic inflammation depending on the time of asthma onset

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Bronchial asthma (asthma) is a complex, heterogeneous, multifactorial chronic disease. The pathophysiological mechanisms of the interaction between asthma and obesity have attracted considerable attention.

AIM: The work aimed to assess the characteristics of the cytokine profile in patients with asthma and obesity depending on the time of asthma onset.

METHODS: A total of 180 individuals were examined: 150 patients with asthma of varying severity were stratified by body mass index and divided into two study groups: those with a body mass index of 18.5–25 kg/m2 (n = 52, Asthma group) and those with a body mass index of 30–35 kg/m2 (n = 98). The control group consisted of 30 individuals. Patients with asthma and obesity (body mass index > 30 kg/m2) were further subdivided into two groups according to the time of asthma onset: Obesity + Asthma and Asthma + Obesity (with asthma duration of approximately 10 years). Asthma severity was assessed using the Asthma Control Test (ACT) and the Asthma Control Questionnaire (ACQ-5). Spirometry with bronchodilator testing was performed, and venous blood was collected to determine cytokine profile parameters (tumor necrosis factor-alpha; interleukins IL-2, IL-4, IL-6, IL-8, IL-10, IL-17; interferon-gamma) and markers of systemic inflammation (C-reactive protein, fibrinogen).

RESULTS: The asthma–obesity phenotype was characterized by a more severe course and poorer disease control, with the Obesity + Asthma group showing the most pronounced bronchial obstruction. Analysis of the cytokine profile revealed a significant imbalance between proinflammatory and anti-inflammatory cytokines, most pronounced in the Obesity + Asthma group. The findings underscore the importance of determining cytokine ratio indices with opposing activities (IL-2/IL-4, IL-2/IL-10, IL-8/IL-10, IL-6/IL-10, tumor necrosis factor-alpha/IL-10) to assess the severity of the inflammatory process and guide treatment strategies.

CONCLUSION: Obesity contributes to the development and maintenance of systemic inflammation, aggravating the course and progression of asthma.

About the authors

Dmitry А. Anikin

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital

Author for correspondence.
Email: anikin27111994@mail.ru
ORCID iD: 0000-0002-1598-436X
SPIN-code: 3045-8493

MD

Russian Federation, 1 Partizana Zeleznyak st, Krasnoyarsk, 660022; Krasnoyarsk

Irina A. Soloveva

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital

Email: acad-prorector@krasgmu.ru
ORCID iD: 0000-0002-1999-9534
SPIN-code: 8713-5470

MD, Dr. Sci. (Medicine), Associate Professor

Russian Federation, Krasnoyarsk; Krasnoyarsk

Irina V. Demko

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital

Email: demko64@mail.ru
ORCID iD: 0000-0001-8982-5292
SPIN-code: 6520-3233

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Krasnoyarsk; Krasnoyarsk

Elena A. Sobko

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital

Email: sobko29@mail.ru
ORCID iD: 0000-0002-9377-5213
SPIN-code: 9132-6756

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Krasnoyarsk; Krasnoyarsk

Natalia V. Gordeeva

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital

Email: natagorday@yandex.ru
ORCID iD: 0000-0002-0586-8349
SPIN-code: 7914-7630

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Krasnoyarsk; Krasnoyarsk

Angelina Yu. Kraposhina

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital

Email: angelina-maria@inbox.ru
ORCID iD: 0000-0001-6896-877X
SPIN-code: 8829-9240

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Krasnoyarsk; Krasnoyarsk

References

  1. Lambrecht BN, Hammad H, Fahy JV. The Cytokines of asthma. Immunity. 2019;50(4):975–991. doi: 10.1016/j.immuni.2019.03.018 EDN: WYRTMS
  2. Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021;184(6):1469–1485. doi: 10.1016/j.cell.2021.02.016 EDN: MJKFQL
  3. Bantulà M, Roca-Ferrer J, Arismendi E, Picado C. Asthma and obesity: two diseases on the rise and bridged by inflammation. J Clin Med. 2021;10(2):169. doi: 10.3390/jcm10020169 EDN: RHHCYB
  4. Pavlova ZSh, Golodnikov II. Obesity = inflammation. Pathogenesis. How does this threaten men? Medical Herald of the South of Russia. 2020;11(4):6–23. doi: 10.21886/2219-8075-2020-11-4-6-23 EDN: QSICYR
  5. Ellulu MS, Patimah I, Khaza'ai H, et al. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851–863. doi: 10.5114/aoms.2016.58928
  6. Karczewski J, Śledzińska E, Baturo A, et al. Obesity and inflammation. Eur Cytokine Netw. 2018;29(3):83–94. doi: 10.1684/ecn.2018.0415 EDN: AWODXK
  7. Maffeis L, Agostoni CV, Marafon DP, et al. Cytokines profile and lung function in children with obesity and asthma: a case control study. Children (Basel). 2022;9(10):1462. doi: 10.3390/children9101462 EDN: TPKSGI
  8. Sánchez-Ortega H, Jiménez-Cortegana C, Novalbos-Ruiz JP, et al. Role of leptin as a link between asthma and obesity: a systematic review and meta-analysis. Int J Mol Sci. 2022;24(1):546. doi: 10.3390/ijms24010546 EDN: BHVIGD
  9. De A, Rastogi D. Association of pediatric obesity and asthma, pulmonary physiology, metabolic dysregulation, and atopy; and the role of weight management. Expert Rev Endocrinol Metab. 2019;14(5):335–349. doi: 10.1080/17446651.2019.1635007
  10. Suren Garg S, Kushwaha K, Dubey R, et al. Association between obesity, inflammation and insulin resistance: Insights into signaling pathways and therapeutic interventions. Diabetes Res Clin Pract. 2023;200:110691. doi: 10.1016/j.diabres.2023.110691
  11. Dixon AE, Poynter ME. Mechanisms of asthma in obesity. pleiotropic aspects of obesity produce distinct asthma phenotypes. Am J Respir Cell Mol Biol. 2016;54(5):601–608. doi: 10.1165/rcmb.2016-0017PS
  12. Dixon AE, Pratley RE, Forgione PM, et al. Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation. J Allergy Clin Immunol. 2011;128(3):508–15.e152. doi: 10.1016/j.jaci.2011.06.009
  13. Holguin F, Bleecker ER, Busse WW, et al. Obesity and asthma: an association modified by age of asthma onset. J Allergy Clin Immunol. 2011;127(6):1486–93.e2. doi: 10.1016/j.jaci.2011.03.036
  14. Sutherland ER, Goleva E, King TS, et al. Cluster analysis of obesity and asthma phenotypes. PLoS One. 2012;7(5):e36631. doi: 10.1371/journal.pone.0036631
  15. Holguin F, Comhair SA, Hazen SL, et al. An association between L-arginine/asymmetric dimethyl arginine balance, obesity, and the age of asthma onset phenotype. Am J Respir Crit Care Med. 2013;187(2):153–159. doi: 10.1164/rccm.201207-1270OC
  16. Stern JS, Hirsch J, Blair SN, et al. Weighing the options: criteria for evaluating weight-management programs. The Committee to Develop Criteria for Evaluating the Outcomes of Approaches to Prevent and Treat Obesity. Obes Res. 1995;3(6):591–604.
  17. Chuchalin AG, Avdeev SN, Aisanov ZR. Federal guidelines on diagnosis and treatment of bronchial asthma. Pulmonologiya. 2022;32;(3):393–447. doi: 10.18093/0869-0189-2022-32-3-393-447 EDN: HZEHSI
  18. Habib N, Pasha MA, Tang DD. Current understanding of asthma pathogenesis and biomarkers. Cells. 2022;11(17):2764. doi: 10.3390/cells11172764 EDN: IGVJXT
  19. Haque TT, Frischmeyer-Guerrerio PA. The role of TGFβ and other cytokines in regulating mast cell functions in allergic inflammation. Int J Mol Sci. 2022;23(18):10864. doi: 10.3390/ijms231810864 EDN: EOCATR
  20. Tereshchenko IV, Kayushev PE. Tumor necrosis factor α and its role in pathologies Russian Medical Inquiry. 2022;6(9):523–527. doi: 10.32364/2587-6821-2022-6-9-523-527 EDN: CMHVKK
  21. Rolski F, Błyszczuk P. Complexity of TNF-α signaling in heart disease. J Clin Med. 2020;9(10):3267. doi: 10.3390/jcm9103267 EDN: HPFMEQ
  22. Kozlov VK, editor. Cytokine therapy: pathogenetic focus in infectious diseases and clinical effectiveness: Guide for doctors of St. Petersburg. Saint Petersburg: Al'ter Jego; 2010. 148 p. (In Russ.) EDN: OVELWQ
  23. Murakami M, Kamimura D, Hirano T. Pleiotropy and specificity: insights from the interleukin 6 family of cytokines. Immunity. 2019;50(4):812–831. doi: 10.1016/j.immuni.2019.03.027 EDN: NPACYD
  24. Gubernatorova EO, Gorshkova EA, Namakanova OA, et al. Non-redundant functions of IL-6 produced by macrophages and dendritic cells in allergic airway inflammation. Front Immunol. 2018;9:2718. doi: 10.3389/fimmu.2018.02718 EDN: KSCIEK
  25. Topolyanskaya SV. Interleukin 6 in aging and age-related diseases. The Clinician. 2020;14(3-4):10–17. doi: 10.17650/1818-8338-2020-14-3-4-K633 EDN: DNEUOQ
  26. Osadchuk MA, Solodenkova KS. Mediators of inflammation: the role in development of vascular lesions and cardiovascular risk evaluation. Russian Journal of Cardiology and Cardiovascular Surgery. 2016;9(4):63–72. doi: 10.17116/kardio20169463-72 EDN: WHRFHV
  27. Trushina EY, Kostina EM, Baranova NI, Tipikin VA. The cytokines role as inflammation molecular markers in non-allergic bronchial asthma. Modern Problems of Science and Education. 2018;(4):179. EDN: YMHAHB
  28. Pirogov AB, Prikhodko AG, Perelman JM. Interleukin 8 and bronchial eosinophils in patients with asthma and cold airway hyperresponsiveness. Bulletin Physiology and Pathology of Respiration. 2022;(83):8–14. doi: 10.36604/1998-5029-2022-83-8-14 EDN: AMNBAM
  29. Prosekova EV, Turyanskaya AI, Sabynych VA. Assessment of interleukin-17 system in children with allergic bronchial asthma. Pacific Medical Journal. 2018;(4):37–40. doi: 10.17238/PmJ1609-1175.2018.4.37-40 EDN: YNHLNR
  30. Ritzmann F, Lunding LP, Bals R, et al. IL-17 cytokines and chronic lung diseases. Cells. 2022;11(14):2132. doi: 10.3390/cells11142132 EDN: IANKXR
  31. Park SJ, Lee YC. Interleukin-17 regulation: an attractive therapeutic approach for asthma. Respir Res. 2010;11(1):78. doi: 10.1186/1465-9921-11-78 EDN: ILQKIH
  32. Smolnikova MV, Tereshchenko SY, Konopleva OS, Smirnova SV. IL17A genetic/F polymorphism in bronchial asthma pathogenesis in children. Siberian Medical Review. 2019;(1):54–62. doi: 10.20333/2500136-2019-1-54-62 EDN: ZINPVJ
  33. Agache I, Ciobanu C, Agache C, Anghel M. Increased serum IL-17 is an independent risk factor for severe asthma. Respir Med. 2010;104(8):1131–1137. doi: 10.1016/j.rmed.2010.02.018
  34. Doe C, Bafadhel M, Siddiqui S, et al. Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest. 2010;138(5):1140–1147. doi: 10.1378/chest.09-3058
  35. Chehimi M, Vidal H, Eljaafari A. Pathogenic role of IL-17-producing immune cells in obesity, and related inflammatory diseases. J Clin Med. 2017;6(7):68. doi: 10.3390/jcm6070068
  36. Miranda TS, Heluy SL, Cruz DF, et al. The ratios of pro-inflammatory to anti-inflammatory cytokines in the serum of chronic periodontitis patients with and without type 2 diabetes and/or smoking habit. Clin Oral Investig. 2019;23(2):641–650. doi: 10.1007/s00784-018-2471-5 EDN: BRNTVP
  37. Finotto S, Jartti T, Johnston SL. Editorial: type i and type iii interferon immune responses in asthma. Front Immunol. 2022;12:826363. doi: 10.3389/fimmu.2021.826363 EDN: CFBSPJ
  38. Nenasheva NM. Biological treatment of severe asthma: new objectives and new treatment options. Medical Council. 2019;(15):50–61. doi: 10.21518/2079-701X-2019-15-50-61 EDN: HLZMLB
  39. Boytsova EA, Azimurodova GO, Kosenkova TV. Interleukin 4: biological functions and clinical importance in allergiesdevelopment (review). Preventive and Clinical Medicine. 2020;(2):70–79. EDN: QKROFE
  40. Chao R, Li D, Yue Z, et al. Interleukin-4 restores insulin sensitivity in insulin-resistant osteoblasts by increasing the expression of insulin receptor substrate 1. Biochemistry (Mosc). 2020;85(3):334–343. doi: 10.1134/S0006297920030098 EDN: PBGKQG
  41. Antonyuk MV, Gvozdenko TA, Novgorodtseva TP, et al. Features of cytokine profile in patients with bronchial asthma combined with obesity. Medical Immunology (Russia). 2018;20(6):913–920. doi: 10.15789/1563-0625-2018-6-913-920 EDN: TIOOKE
  42. Gurina OP, Varlamova ON, Mukhitova LF. Interleukin-10. Biological role and clinical significance. University Therapeutic Journal. 2020;2(4):66–74. EDN: TIOOKE
  43. Zhu X, Zhou L, Li Q, et al. Combined score of C-reactive protein level and neutrophil-to-lymphocyte ratio: A novel marker in distinguishing children with exacerbated asthma. Int J Immunopathol Pharmacol. 2021;35:20587384211040641. doi: 10.1177/20587384211040641 EDN: JTCAYC
  44. Nasser HA, Ezz NZA, Abdel-Mageed HM, Radwan RA. Body mass index and c-reactive protein are potential predictors of asthma development in Egyptian polycystic ovary syndrome patients. J Med Biochem. 2019;38(4):427–436. doi: 10.2478/jomb-2019-0012
  45. Huang F, del-Río-Navarro BE, Alcántara ST, et al. Plasminogen activator inhibitor-1, fibrinogen, and lung function in adolescents with asthma and obesity. Endocr Res. 2012;37(3):135–144. doi: 10.3109/07435800.2012.654555
  46. Hsieh CT, Chien KL, Hsu HC, et al. Associations between fibrinogen levels and the risk of cardiovascular disease and all-cause death: a cohort study from the Chin-Shan community in Taiwan. BMJ Open. 2022;12(4):e054638. doi: 10.1136/bmjopen-2021-054638 EDN: EDOEPU

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Asthma control levels in the study groups based on AST test data.

Download (53KB)
3. Fig. 2. Pulmonary function parameters in the study groups based on spirometry data. BA – bronchial asthma, FEV1 – forced expiratory volume in 1 second, FVC – forced vital capacity.

Download (166KB)
4. Fig. 3. Statistically significant correlations between clinical data and cytokine concentrations in the study groups. BA – bronchial asthma, IL – interleukin, FEV1 – forced expiratory volume in 1 second, TNF-α – tumor necrosis factor alpha, SABA – short-acting β2-agonists, CRP – C-reactive protein; p < 0.01.

Download (115KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».