Computer vision syndrome from the standpoint of principles of diagnostics and treatment of accommodative and sensory visual fatigue: literature review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review was performed using databases Russian Science Citation Index and PubMed, with the search keywords being "computer vision syndrome", "accommodation", "quality of life", "visual performance", "critical fusion and flicker frequency", "contrast sensitivity". The sources were selected in accordance with the criteria of prospective or retrospective studies. The data obtained indicate that the problem of diagnosis and treatment of accommodative and sensory visual fatigue in patients with computer vision syndrome is relevant in modern conditions of industrial activity due to the high frequency of distribution and possible negative impact on labor productivity. By now, the literature has formulated the basic principles of diagnostics and treatment of accommodative visual fatigue associated with the use of objective (accommodography) and subjective (quality of life) research methods, as well as the use of specific treatment methods (exposure to low-energy laser radiation, magnetophoresis, hardware optical-reflex training) taking into account a differentiated approach to the type of asthenopia. Much less developed is the problem of sensory visual fatigue, based on diagnostics using special research methods (critical frequency of fusion and flickering, contrast sensitivity at low spatial frequencies) and the implementation of therapeutic and restorative measures taking into account the syndrome-pathogenetic approach to the use of physical methods of treatment, one of which (in the long term) is ophthalmochromotherapy.

About the authors

Igor G. Ovechkin

Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies

Author for correspondence.
Email: doctoro@mail.ru
ORCID iD: 0000-0003-3996-1012
SPIN-code: 8074-1879

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Darya A. Shavshina

Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies

Email: shavshina28@yandex.ru
ORCID iD: 0000-0002-7055-4098
SPIN-code: 3313-6419
Russian Federation, Moscow

References

  1. Calixte R, Rivera A, Oridota O, et al. Social and demographic patterns of health-related internet use among adults in the united states: a secondary data analysis of the health information national trends survey. Int J Environ Res Public Health. 2020;17(18):6856. doi: 10.3390/ijerph17186856 EDN: WNENAT
  2. Zeng B, Rivadeneira NA, Wen A, et al. The impact of the COVID-19 pandemic on internet use and the use of digital health tools: secondary analysis of the 2020 health information national trends survey. J Med Internet Res. 2022;24(9):e35828. doi: 10.2196/35828 EDN: DMRLSZ
  3. Jaiswal S, Asper L, Long J, et al. Ocular and visual discomfort associated with smartphones, tablets and computers: what we do and do not know. Clin Exp Optom. 2019;102(5):463–477. doi: 10.1111/cxo.12851
  4. Turkistani AN, Al-Romaih A, Alrayes MM, et al. Computer vision syndrome among Saudi population: An evaluation of prevalence and risk factors. J Family Med Prim Care. 2021;10(6):2313–2318. doi: 10.4103/jfmpc.jfmpc_2466_20 EDN: MPTVZF
  5. Zalat MM, Amer SM, Wassif GA, et al. Computer vision syndrome, visual ergonomics and amelioration among staff members in a Saudi medical college. Int J Occup Saf Ergon. 2022;28(2):1033–1041. doi: 10.1080/10803548.2021.1877928 EDN: MOQNTL
  6. Anbesu EW, Lema AK. Prevalence of computer vision syndrome: a systematic review and meta-analysis. Sci Rep. 2023;13(1):1801. doi: 10.1038/s41598-023-28750-6 EDN: CJICKM
  7. Li L, Zhang J, Chen M, et al. Contribution of total screen/online-course time to asthenopia in children during COVID-19 pandemic via influencing psychological stress. Front Public Health. 2021;9:736617. doi: 10.3389/fpubh.2021.736617 EDN: FNERFG
  8. Long J, Cheung R, Duong S, et al. Viewing distance and eyestrain symptoms with prolonged viewing of smartphones. Clin Exp Optom. 2017;100(2):133–137. doi: 10.1111/cxo.12453
  9. Munshi S, Varghese A, Dhar-Munshi S. Computer vision syndrome — A common cause of unexplained visual symptoms in the modern era. Int J Clin Pract. 2017;71(7):e12962. doi: 10.1111/ijcp.12962
  10. Tangmonkongvoragul C, Chokesuwattanaskul S, Khankaeo C, et al. Prevalence of symptomatic dry eye disease with associated risk factors among medical students at Chiang Mai University due to increased screen time and stress during COVID-19 pandemic. PLoS One. 2022;17(3):e0265733. doi: 10.1371/journal.pone.0265733 EDN: JNEHYG
  11. Boadi-Kusi SB, Adueming PO, Hammond FA, et al. Computer vision syndrome and its associated ergonomic factors among bank workers. Int J Occup Saf Ergon. 2022;28(2):1219–1226. doi: 10.1080/10803548.2021.1897260 EDN: WHDSOI
  12. Proskurina OV, Tarutta EP, Iomdina EN, et al. A modern classification of asthenopias: clinical forms and stages. Russian Ophthalmological Journal. 2016;9(4):69–73. doi: 10.21516/2072-0076-2016-9-4-69-73 EDN: XEQNRV
  13. Lara F, Del Águila-Carrasco AJ, Marín-Franch I, et al. The effect of retinal illuminance on the subjective amplitude of accommodation. Optom Vis Sci. 2020;97(8):641–647. doi: 10.1097/OPX.0000000000001544 EDN: EDZSRI
  14. Stokkermans TJ, Reitinger JC, Tye G, et al. Accommodative exercises to lower intraocular pressure. J Ophthalmol. 2020;2020:6613066. doi: 10.1155/2020/6613066 EDN: PFSPZD
  15. Mironov AV, Ovechkin IG comparative evaluation of objective and subjective indicators accommodative system of the eye in patients visually-intense work. Sovremennaja optometrija. 2015;(6):16–19. EDN: TZKVDV
  16. Tarutta EP, Tarasova NA, Markosyan GA, et al. An objective study of negative accommodation. Russian Ophthalmological Journal. 2019;12(1):64–68. doi: 10.21516/2072-0076-2019-12-1-64-68 EDN: YZIOTR
  17. Таrutta EP, Luzhnov PV, Tarasova NA, еt al. A new method for quantifying accommodation parameters based on objective dynamic accommodometry. Russian Ophthalmological Journal. 2024;17(2):38–46. doi: 10.21516/2072-0076-2024-17-2-38-46 EDN: AAXBHM
  18. Katargina LA, edition. Accommodation: a guide for doctors. Moscow: April; 2012. 136 p. (In Russ.)
  19. Ovechkin IG, Gadzhiev IS, Kozhukhov AA, Belikova EI. Diagnostic criteria for asthenic accommodative asthenopia in patients with computer vision syndrome. Russian Journal of Clinical Ophthalmology. 2020;20(4):169–174. doi: 10.32364/2311-7729-2020-20-4-169-174
  20. Şahlı E, İdil ŞA. Comparison of quality of life questionnaires in patients with low vision. Turk J Ophthalmol. 2021;51(2):83–88. doi: 10.4274/tjo.galenos.2020.99975 EDN: OFNGTG
  21. Belikova EI, Gatilov DV, Ovechkin NI, Eskina EN. Modern aspects of diagnosis and treatment of subjective manifestations and accommodation disorders in patients — professional users of personal computers (systematic review). Russian Medicine. 2023;29(3):217–227. doi: 10.17816/medjrf340800 EDN: QPUYQU
  22. Tarutta EP, Iomdina EN, Tarasova NA. Nonsurgical treatment of progressive myopia. RMJ. Clinical ophthalmology. 2016;(4):204–210. doi: 10.21689/2311-7729-2016-16-4-204-210
  23. Tarutta EP, Tarasova NA. Comparative evaluation of the effectiveness of various treatment modalities for accommodation disorders and acquired progressive myopia. Russian Annals of Ophthalmology. 2015;131(1):24–29. doi: 10.17116/oftalma2015131124-28
  24. Ovechkin IG, Gadzhiev IS, Kozhukhov AA, et al. Optical reflex treatment of myopia and asthenic form of accommodation asthenopia form the standpoint of the methods used, effectiveness and staging. Oftal''mologija. 2020;17(3):422–428. doi: 10.18008/1816-5095-2020-3-422-428 EDN: PZESXA
  25. Yudin VE, Yaroshenko VP, Belikova EI, et al. Methodological principles of medical rehabilitation of patients with visually strenuous work with the symptoms of accommodative asthenopia after excimer laser correction of myopia. Bulletin of the Medical Institute of Continuing Education. 2023;3(2):64–69. doi: 10.36107/2782-1714_2023-3-2-64-69 EDN: CPCGLJ
  26. Belikova EI, Gatilov DV, Ovechkin IG, Eskina EN. Excimer laser correction of myopia in patients with visually intense work — is it necessary to determine the form of accommodative asthenopia? Ophthalmology in Russia. 2023;20(2):276–282. (In Russ.) doi: 10.18008/1816-5095-2023-2-276-282 EDN: CTVYUS
  27. Ovechkin IG, Yudin VE, Emelianov GA, et al. Multidisciplinary approach to correction of accommodative-refractive disorders in patients with visually-intense work. Oftal''mologija. 2015;12(2):68–73. doi: 10.18008/1816-5095-2015-2-68-73 EDN: TZHSRD
  28. Shapovalov SL, Milyavskaya TI, Ignatiev SA. The main forms of asthenopia. Moscow: Mick; 2012. 288 p. (In Russ.)
  29. Zayed HAM, Saied SM, Younis EA, Atlam SA. Digital eye strain: prevalence and associated factors among information technology professionals, Egypt. Environ Sci Pollut Res Int. 2021;28(20):25187–25195. doi: 10.1007/s11356-021-12454-3 EDN: NEQJTI
  30. Çupi B, Šarac I, Jovanović JJ, et al. Occupational and non-occupational risk factors correlating with the severity of clinical manifestations of carpal tunnel syndrome and related work disability among workers who work with a computer. Arh Hig Rada Toksikol. 2023;74(4):252–272. doi: 10.2478/aiht-2023-74-3754 EDN: CRWAKI
  31. Saint SE, Hammond BR Jr, Khan NA, et al. Temporal vision is related to cognitive function in preadolescent children. Appl Neuropsychol Child. 2021;10(4):319–326. doi: 10.1080/21622965.2019.1699096
  32. Balestra C, Machado ML, Theunissen S, et al. Critical flicker fusion frequency: a marker of cerebral arousal during modified gravitational conditions related to parabolic flights. Front Physiol. 2018;9:1403. doi: 10.3389/fphys.2018.01403 EDN: EFUZOI
  33. Berenji Ardestani S, Balestra C, Bouzinova EV, et al. Evaluation of divers' neuropsychometric effectiveness and high-pressure neurological syndrome via computerized test battery package and questionnaires in operational setting. Front Physiol. 2019;10:1386. doi: 10.3389/fphys.2019.01386
  34. Aswathappa J. Internet addiction induced critical fusion frequency among young adults. Bioinformation. 2023;19(7):816–819. doi: 10.6026/97320630019816 EDN: IQFHWA
  35. Singh S, Downie LE, Anderson AJ. Is critical flicker-fusion frequency a valid measure of visual fatigue? A post-hoc analysis of a double-masked randomised controlled trial. Ophthalmic Physiol Opt. 2023;43(2):176–182. doi: 10.1111/opo.13073 EDN: ZNXAFC
  36. Singh S, McGuinness MB, Anderson AJ, et al. Interventions for the management of computer vision syndrome: a systematic review and meta-analysis. Ophthalmology. 2022;129(10):1192–1215. doi: 10.1016/j.ophtha.2022.05.009 EDN: FSGBXF
  37. Chen YL, Chu KH, Huang PC, et al. Eyestrains among smartphone users while watching videos in Taipei MRT carriages: a comparison between sitting and standing postures. Sci Rep. 2024;14(1):25407. doi: 10.1038/s41598-024-76334-9 EDN: TIFVTY
  38. Mankowska ND, Marcinkowska AB, Waskow M, et al. Critical flicker fusion frequency: a narrative review. Medicina (Kaunas). 2021;57(10):1096. doi: 10.3390/medicina57101096 EDN: CIXDYF
  39. Talens-Estarelles C, Mechó-García M, McAlinden C, et al. Changes in visual function and optical and tear film quality in computer users. Ophthalmic Physiol Opt. 2023;43(4):885–897. doi: 10.1111/opo.13147 EDN: PLQJES
  40. Stringham JM, Stringham NT, O'Brien KJ. Macular carotenoid supplementation improves visual performance, sleep quality, and adverse physical symptoms in those with high screen time exposure. Foods. 2017;6(7):47. doi: 10.3390/foods6070047
  41. Xu Y, Aung HL, Hesam-Shariati N, et al. Contrast sensitivity, visual field, color vision, motion perception, and cognitive impairment: a systematic review. J Am Med Dir Assoc. 2024;25(8):105098. doi: 10.1016/j.jamda.2024.105098 EDN: CJWNWF
  42. Flaharty K, Niziol LM, Woodward MA, et al. Association of contrast sensitivity with eye disease and vision-related quality of life. Am J Ophthalmol. 2024;261:176–186. doi: 10.1016/j.ajo.2024.01.021 EDN: FQFFAW
  43. Tuna AR, Pinto N, Fernandes A, et al.Can repetitive transcranial magnetic stimulation influence the visual cortex of adults with amblyopia? — systematic review. Clin Exp Optom. 2024;107(7):691–697. doi: 10.1080/08164622.2024.2363369 EDN: YGRNEN
  44. Shakula AV, Ovechkin IG, Emelyanov GA, et al. Methods of rehabilitation of patients visually-intense work with socially significant disorders of psychological adjustment. Bulletin of Restorative Medicine. 2013;(6):74–79. EDN: SPLBJP
  45. Ovechkin IG, Yudin VYe, Yemelyanov GA, Mironov AV. Correction accommodative-refractive disorders in persons hand-hard work from the standpoint of modern methods of physical impact. Sovremennaya oftal'mologiya. 2015;5:24–28. EDN: TZJEGB
  46. Ovechkin IG, Yudin VE, Mironov AV, et al. Application of cranial osteopathic therapy in complex treatment of accommodation-refractive disorders in patients with visually-intense work. Cataract and refractive surgery. 2015;15(2):52–53. (In Russ.)
  47. Fan Q, Xie J, Dong Z, Wang YA. The effect of ambient illumination and text color on visual fatigue under negative polarity. Sensors (Basel). 2024;24(11):3516. doi: 10.3390/s24113516 EDN: FAXHUJ
  48. Valter K, Tedford SE, Eells JT, Tedford CE. Photobiomodulation use in ophthalmology — an overview of translational research from bench to bedside. Front Ophthalmol (Lausanne). 2024;4:1388602. doi: 10.3389/fopht.2024.1388602 EDN: EZRACO
  49. Rychkova SI, Likhvantseva VG. Results of using different modes of presentation of stereostimuli in the study of stereo vision in normal children and in children with non-paralytic strabismus without functional scotoma. Oftal'mologija. 2021;18(2):296–308. doi: 10.18008/1816-5095-2021-2-296-308 EDN: AWZDEZ
  50. Korchazhkina NA, Katsnelson VN, Drakon AS. Combined use of transcranial magnetotherapy by a running reversible magnetic field and synchronized ophthalmic chromotherapy to improve cognitive abilities in martial arts athletes with peripheral retinal degenerations. Kremlevskaja medicina. Klinicheskij vestnik. 2018;1:171–174. EDN: YQXUCM

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».