Affective disorders accompanied by cognitive impairment in patients with a cardiac profile: prevalence, multimorbidity, and medical and social risk factors

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Clinical and medico-social issues of affective pathology combined with cognitive impairment in cardiac patients are a crucial problem in modern medicine. Studies have shown that 30–50% of patients with cardiovascular diseases suffer from depression and anxiety, and depressive disorders lead to disease complications and increase the mortality rate among cardiac patients. Studies based on the concept of multimorbidity show that depressive and anxiety disorders and cardiovascular diseases have common pathogenesis mechanisms: dysfunction of the hypothalamic-pituitary system, dyslipidemia, cytokine activation followed by impaired metabolism of biogenic amines, high degree and rate of platelet aggregation, and other humoral cellular mechanisms leading to dyscirculatory changes and damage to the white matter of the brain. Moreover, studies have shown an association between hypertension and chronic cerebrovascular insufficiency and increased risk of cognitive impairment. Cognitive dysfunctions in affective pathology are of great clinical and social importance; however, their initial manifestations in cardiac patients remain insufficiently diagnosed. This leads to missed opportunities for the prevention of cognitive deficits. The clinical manifestations and prognosis of multimorbid diseases are influenced by biomedical and psychosocial factors. Adverse psychosocial factors lead to clinical complications of diseases, reduce patients’ adherence to treatment, negatively affect lifestyle, disrupt social functioning, and lead to disability. Affective pathology significantly worsens social adaptation, the quality of life of patients, and the prognosis of cardiac disease and reduces adherence to treatment and does not induce a healthy lifestyle.

This review shows that it is critical to further develop the concept of multimorbidity aimed at finding common mechanisms of affective, cognitive, and cardiovascular pathology, and improving measures for the prevention and therapy of combined diseases. Full-text articles and fragments of monographs selected by keywords in the databases Scopus, Web of Science, MEDLINE, RSCI, eLIBRARY.RU, disserCat.ru, Psychiatrist, and ScienceDirect were used.

作者简介

Irina Mashkova

-

编辑信件的主要联系方式.
Email: mashkovairina2018@gmail.com
ORCID iD: 0000-0002-4342-671X
SPIN 代码: 5929-7530

MD, Cand. Sci. (Medicine), Associate Professor

俄罗斯联邦, Moscow

Natalya Osipova

Russian University of Medicine

Email: dr.nataliaosipova@gmail.com
ORCID iD: 0000-0002-8034-4457
SPIN 代码: 7532-4382

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow

Leonid Bardenshteyn

Russian University of Medicine

Email: barden@mail.ru
ORCID iD: 0000-0002-1171-5517
SPIN 代码: 9289-9177

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow

Galina Alyoshkina

Russian University of Medicine

Email: aleshkina-ga@yandex.ru
ORCID iD: 0000-0001-7028-8669
SPIN 代码: 7477-8598

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow

Yuri Vasyuk

Russian University of Medicine

Email: yvasyuk@yandex.ru
ORCID iD: 0000-0003-1296-941X
SPIN 代码: 2265-5331

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow

参考

  1. Glushchenko VA, Irklienko EK. Depression in cardiac patients (literature review). Medicine: Theory and Practice. 2017;2(3):23–27. EDN: XSHKHB
  2. Dovzhenko TV. Depressive spectrum disorders with cardialgic syndrome in patients with cardiovascular diseases (clinic, diagnosis, therapy) [dissertation]. Moscow; 2008. EDN: NQLHAR
  3. Skripov VS, Gubernskova AD. Organization of psychosomatic care for patients with cardiac pathology. The Scientific Notes of IPPSPSMU. 2018;25(1):15–20. EDN: ORRLRX doi: 10.24884/1607-4181-2018-25-1-15-20
  4. Belialov FI. Depression, anxiety, and stress in patients with coronary heart disease. Ter Arkh. 2017;89(8):104–109. EDN: ZFDKYH doi: 10.17116/terarkh2017898104-109
  5. Kozlova SN. Comorbidity of coronary heart disease and affective disorders of the anxiety-depressive spectrum: clinical and pathogenetic aspects, prognosis and possibilities of drug correction [dissertation abstract]. Saint Petersburg; 2013. EDN: ZPCSRR
  6. Pogosova NV, Boitsov SA, Oganov RG, et al. Clinical-epidemiological program of studying psychosocial risk factors in cardiological practice in patients with arterial hypertension and ischemic heart disease: first results of a multicenter study in Russia. Kardiologiia. 2018;58(9):47–58. EDN: OZWKDZ doi: 10.18087/cardio.2018.9.10171
  7. Lim LF, Solmi M, Cortese S. Association between anxiety and hypertension in adults: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2021;131:96–119. doi: 10.1016/j.neubiorev.2021.08.031
  8. Prince M, Prina M, Guerchet M. World Alzheimer report 2013: journey of caring: an analysis of long-term care for dementia. 2013.
  9. Mikhailova NM, Sokolova ON. Dementia in old age: from diagnosis to fatal outcome. V.M. Bekhterev Review of Psychiatry and Medical Psychology. 2020;(3)64–72. EDN: PIUTOD doi: 10.31363/2313-7053-2020-3-64-72
  10. Vasenina EE, Levin OS, Sonin AG. Modern trends in the epidemiology of dementia and the management of patients with cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(6-2):87–95. EDN: ZGYWOX doi: 10.17116/jnevro20171176287-95
  11. Petersen RC, Lopez O, Armstrong MJ, et al. Practice guideline update summary: mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90(3):126–135. doi: 10.1212/WNL.0000000000004826
  12. Cao Q, Tan CC, Xu W, et al. The prevalence of dementia: a systematic review and meta-analysis. J Alzheimers Dis. 2020;73(3):1157–1166. doi: 10.3233/JAD-191092
  13. Violan C, Foguet-Boreu Q, Flores-Mateo G, et al. Prevalence, determinants and patterns of multimorbidity in primary care: a systematic review of observational studies. PLoS One. 2014;9(7):e102149. doi: 10.1371/journal.pone.0102149
  14. Triolo F, Harber-Aschan L, Belvederi Murri M, et al. The complex interplay between depression and multimorbidity in late life: risks and pathways. Mech Ageing Dev. 2020;192:111383. doi: 10.1016/j.mad.2020.111383
  15. Bobrov AE, Starostina EG, Agamamedova IN, et al. Mental disorders in type 2 diabetes mellitus. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(7):22–30. EDN: TXIPKK doi: 10.17116/jnevro202112107122
  16. Holahan CJ, Pahl SA, Cronkite RC, et al. Depression and vulnerability to incident physical illness across 10 years. J Affect Disord. 2010;123(1-3):222–229. doi: 10.1016/j.jad.2009.10.006
  17. Poole L, Steptoe A. Depressive symptoms predict incident chronic disease burden 10 years later: findings from the English Longitudinal Study of Ageing (ELSA). J Psychosom Res. 2018;113:30–36. doi: 10.1016/j.jpsychores.2018.07.009
  18. Koyanagi A, Köhler-Forsberg O, Benros ME, et al. Mortality in unipolar depression preceding and following chronic somatic diseases. Acta Psychiatr Scand. 2018;138(6):500–508. doi: 10.1111/acps.12899
  19. Moiseicheva OV, Stepanov IL. Clinico-psychopathological picture of depression with regard for previous exacerbations of physical disorders. Social and Clinical Psychiatry. 2020;30(3):31–36. EDN: XREKSN
  20. Angst J, Gamma A, Rössler W, et al. Long-term depression versus episodic major depression: results from the prospective Zurich study of a community sample. J Affect Disord. 2009;115(1-2):112–121. doi: 10.1016/j.jad.2008.09.023
  21. Bardenstein LM, Torchinov AM, Umakhanova MM, Kharkharova MA. Clinical typology of depressive disorders in perimenopausal women. Allergologija i immunologija. 2005;6(2):269–275. EDN: DBKIVC
  22. Farmer A, Korszun A, Owen MJ, et al. Medical disorders in people with recurrent depression. Br J Psychiatry. 2008;192(5):351–355. doi: 10.1192/bjp.bp.107.038380
  23. Kasyanov ED, Mazo GE, Kibitov AO. In search of «hereditary» forms of depression: clinical, genetic and biological approaches. Social and Clinical Psychiatry. 2018;28(1):69–75. EDN: XVYILJ
  24. Shmukler AB, Kibitov AO, Mazo GE, et al. Network analysis as a promising method for studying the genetic architecture of depression. Social and Clinical Psychiatry. 2020;30(4):69–75. EDN: PCLBOY
  25. Rukavishnikov GV, Kibitov AO, Mazo GE, Neznanov NG. Genetic comorbidity of depression and somatic disorders. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(1):89–96. EDN: VUDCGW doi: 10.17116/jnevro201911901189
  26. Birk JL, Kronish IM, Moise N, et al. Depression and multimorbidity: considering temporal characteristics of the associations between depression and multiple chronic diseases. Health Psychol. 2019;38(9):802–811. doi: 10.1037/hea0000737
  27. Matskevich SA, Belskaya MI. Comorbidity of cardiovascular diseases and anxiety-depressive disorders. Medicinskie novosti. 2018;(12):4–8. EDN: VSCWNW
  28. Kubzansky LD, Kawachi I. Going to the heart of the matter: do negative emotions cause coronary heart disease? J Psychosom Res. 2000;48(4-5):323–337. doi: 10.1016/s0022-3999(99)00091-4
  29. Kopylov FYu, Syrkin AL, Drobizhev MYu, et al. Clinical and psychosomatic features of the course of hypertension in conditions of chronic stress. Clinical Medicine (Russian Jornal). 2008;86(2):23–26. EDN: ISDMUX
  30. Borovkov N, Berdnikova L, Dobrotina I. Treatment for anxiety and depressive disorders in patients with cardiovascular diseases. Vrach. 2013;(12):53–58. EDN: RQEDRR
  31. Sobennikov VS, Vinokurov EV, Rychkova LV, Sobennikova VV. Emotional dysregulation as a factor of psychosomatic disorders in depression and cardiovascular pathology (analytical review of foreign literature). Acta biomedica scientifica. 2019;4(1):87–92. EDN: ISABDC doi: 10.29413/ABS.2019-4.1.13
  32. Vasyuk YuA, Dovzhenko TV, Dubrovskaya TI, et al. Characteristics of arterial hypertension clinical course in patients with obesity and anxiety-depressive disorders. Ter Arkh. 2021;93(1):94–99. EDN: BQIZGW doi: 10.26442/00403660.2021.01.200567
  33. Bojcov SA, Pogosova NV, Bubnova MG, et al. Cardiovascular prevention 2017. National guidelines. Russian Journal of Cardiology. 2018;(6):7–122. EDN: XSLTTF doi: 10.15829/1560-4071-2018-6-7-122
  34. Godin O, Dufouil C, Maillard P, et al. White matter lesions as a predictor of depression in the elderly: the 3C-Dijon study. Biol Psychiatry. 2008;63(7):663–669. doi: 10.1016/j.biopsych.2007.09.006
  35. Prugger C, Godin O, Perier MC, et al. Longitudinal association of carotid plaque presence and intima-media thickness with depressive symptoms in the elderly: the three-city study. Arterioscler Thromb Vasc Biol. 2015;35(5):1279–1283. doi: 10.1161/ATVBAHA.114.305061
  36. Ostroumova OD, Parfenov VA, Ostroumova TM, et al. Expert consensus. Effect of antihypertensive therapy on cognitive functions. Systemic Hypertension. 2021;18(1):5–12. EDN: EXNFNY doi: 10.26442/2075082X.2021.1.200575
  37. Scuteri A, Benetos A, Sierra C, et al. Routine assessment of cognitive function in older patients with hypertension seen by primary care physicians: why and how-a decision-making support from the working group on ‘hypertension and the brain’ of the European Society of Hypertension and from the European Geriatric Medicine Society. J Hypertens. 2021;39(1):90–100. doi: 10.1097/HJH.0000000000002621
  38. Reichert LV, Kicherova OA, Reichert LI, Doyan YuI. The state of cognitive function in patients with permanent atrial fibrillation. Universitetskaja medicina Urala. 2018;4(1):83–85. EDN: YUSWCT
  39. Ter Telgte A, van Leijsen EMC, Wiegertjes K, et al. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol. 2018;14(7):387–398. doi: 10.1038/s41582-018-0014-y
  40. Krupenin PM, Voskresenskaya ON, Napalkov DA, Sokolova AA. Cognitive impairment and small vessel disease in atrial fibrillation. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(6):55–62. doi: 10.14412/2074-2711-2022-6-55-62
  41. Sampson E, Mills NT, Hori H, et al. Exploratory analysis of the effects of celecoxib on cognitive function in vortioxetine-treated patients with major depressive disorder in the PREDDICT study: a randomized, double-blind, placebo-controlled clinical trial. J Clin Psychiatry. 2023;84(6):23m14829. doi: 10.4088/JCP.23m14829
  42. Bardenstein LM. Clinic, dynamics and therapy of dysthymia. In: Alexandrovsky YuA, Bardenstein LM, Avedisova AS. Psychopharmacotherapy of borderline mental disorders. Moscow: GEOTAR-Meditsina; 2000. P. 136–162.
  43. Petelin DS, Bayramova SP, Sorokina OYu, et al. Apathy, anhedonia and cognitive dysfunction: common symptoms of depression and neurological disorders. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(5):96–102. EDN: HQACJE doi: 10.1080/17561310.2022.2046532
  44. Knight MJ, Mills NT, Baune BT. Contemporary methods of improving cognitive dysfunction in clinical depression. Expert Rev Neurother. 2019;19(5):431–443. doi: 10.1080/14737175.2019.1610395
  45. Sankhe K, Kiss A, Diniz B, et al. Senescence markers and apathy symptoms in patients with mild cognitive impairment and/or remitted major depression: an analysis of the PACt-MD study. The American Journal of Geriatric Psychiatry. 2024;32(4):S86–S87. doi: 10.1016/j.jagp.2024.01.167
  46. Torenvliet C, Groenman AP, Agelink van Rentergem JA, et al. When mind and measurement diverge; the interplay between subjective cognitive complaints (SCCs), objective cognition, age, and depression in autistic adults. Psychiatry Res. 2024;333:115759. doi: 10.1016/j.psychres.2024.115759
  47. Grunden N, Phillips NA; Consortium for the Early Identification of Alzheimer’s Disease-Quebec (CIMA-Q); COMPASS-ND group. A network approach to subjective cognitive decline: Exploring multivariate relationships in neuropsychological test performance across Alzheimer’s disease risk states. Cortex. 2024;173:313–332. doi: 10.1016/j.cortex.2024.02.005
  48. Ewald VAM, Trapp NT, Sarrett ME, et al. Supra-second interval timing in bipolar disorder: examining the role of disorder sub-type, mood, and medication status. Int J Bipolar Disord. 2023;11(1):32. doi: 10.1186/s40345-023-00312-9
  49. Bonnín CM, Sánchez-Moreno J, Lima F, et al. Factors associated with the discrepancy between objective and subjective cognitive impairment in bipolar disorder. J Affect Disord. 2024;349:210–216. doi: 10.1016/j.jad.2024.01.012
  50. Drapkina OM, Fedin AI, Dorofeeva OA, et al. Influence of psychosocial risk factors on the course and prognosis of cardiovascular diseases. Cardiovascular Therapy and Prevention. 2022;21(5):64–70. EDN: JWUMSA doi: 10.15829/1728-8800-2022-3280
  51. Medvedev VE, Korovyakova EA, Frolova VI, et al. Antidepressant therapy in patients with cardiovascular diseases. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(1):131–140. EDN: ZXSRVZ doi: 10.14412/2074-2711-2019-1-131-140
  52. Pogosova NV, Ausheva AK, Saner H, Boytsov SA. Stress, anxiety and depressive symptoms are predictors of worse outcomes in outpatients with arterial hypertension and coronary heart disease: results of 1.5 years follow-up from the COMETA multicenter study. Kardiologiia. 2023;63(12):3–10. EDN: HXXSYG doi: 10.18087/cardio.2023.12.n2564
  53. Troshina DV, Andreev DA, Fomicheva AV, et al. Social and psychological risk factors for decreased adherence to therapy in patients with atrial fibrillation. Ter Arkh. 2022;94(10):1197–1203. EDN: IUZNRE doi: 10.26442/00403660.2022.10.201905
  54. Stepanov IL, Moiseicheva OV. The role of clinical-psychopathological and the course characteristics of depressive conditions in patients with history of somatic disorders for evaluation of their social functioning. Social and Clinical Psychiatry. 2014;24(3):12–17. EDN: SYRWZD
  55. Penninkilampi R, Casey AN, Singh MF, Brodaty H. The association between social engagement, loneliness, and risk of dementia: a systematic review and meta-analysis. J Alzheimers Dis. 2018;66(4):1619–1633. doi: 10.3233/JAD-180439
  56. Klimak AV, Kharkova OA, Shvarev IV. Features of cognitive processes depending on socio-demographic factors in patients with dementia. Psychiatry, Psychotherapy and Clinical Psychology. 2022;13(4):400–406. EDN: GFDQPM doi: 10.34883/PI.2022.13.4.001
  57. Shavarova EK, Shavarov AA, Akhmetov RE, Kobalava JD. Cognitive impairment in patients with a cardiological profile: diagnosis and prevention. Russian Journal of Cardiology and Cardiovascular Surgery. 2022;15(6):560–569. EDN: XHMKEL doi: 10.17116/kardio202215061560

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».