Methods for monitoring the effectiveness of direct-acting anticoagulants in diabetic retinopathy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Anticoagulants are the basis for the treatment of various diseases that induces the development of arterial and venous thrombosis. One such disease is diabetic retinopathy. However, no consensus has been reached regarding the best way to control the effectiveness of these drugs. Thus, active search is ongoing for specific biomarkers that reflect treatment quality. To this end, this study analyzed scientific papers that presented the results of various laboratory diagnostics aimed at examining the use of anticoagulants in the treatment of diabetic retinopathy.

PubMed and eLIBRARY.RU were searched for legible studies. The review analyzed studies that describe the main groups of anticoagulants and methods of laboratory control of their use and published in the past 30 years. Review articles, results of experimental studies, monographs, study guides, and dissertations were analyzed.

Anticoagulants are divided into direct and indirect. In modern clinical practice, direct ones are mainly used. To control their effectiveness, traditional methods for determining the coagulogram are mainly used; however, increasingly more often, the authors resort to a more detailed study of the rheological properties of the blood, such as determination of anti-X activity, platelet aggregation using inductors, and activity of clotting factors. In addition, determining their effect on the concentration of pro-inflammatory cytokines and growth factors in the blood serum and lacrimal fluid in diabetic retinopathy remains promising.

However, no consensus has been established on which research methods most accurately reflect the effect of anticoagulants on the hemostatic system and indicators of inflammatory activity in various diseases, particularly in diabetic retinopathy. Therefore, a detailed analysis of what laboratory parameters can change under the influence of these drugs is necessary.

About the authors

Vladimir V. Biryukov

Peoples’ Friendship University of Russia named after Patrice Lumumba; Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: Vladusmirgerb@gmail.com
ORCID iD: 0000-0002-4130-6511
SPIN-code: 4523-5303

graduate student

Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow; Moscow

Irina V. Vorobyeva

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: irina.docent2000@mail.ru
ORCID iD: 0000-0003-2707-8417
SPIN-code: 1693-3019

MD, Dr. Sci. (Med.), professor

Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow

Mikhail A. Frolov

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: frolovma@rambler.ru
ORCID iD: 0000-0002-9833-6236
SPIN-code: 1697-6960

MD, Dr. Sci. (Med.), professor

Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow

Alexander M. Frolov

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: Frolov_sasha@rambler.ru
ORCID iD: 0000-0003-0988-1361
SPIN-code: 6338-9946

MD, Cand. Sci. (Med.), associate professor

Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow

Ulyana S. Plyaskina

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: plyaskina.ulyana@yandex.ru
ORCID iD: 0000-0002-9483-1571
SPIN-code: 3004-8545

graduate student

Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow

Sami Shallah

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: samishallah@hotmail.com
ORCID iD: 0000-0003-3576-293X
SPIN-code: 5213-1262

graduate student

Syrian Arab Republic, 6 Miklukho-Maklaya street, 117198 Moscow

Zarrina M. Nuridinova

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: 1052212610@rudn.ru
ORCID iD: 0009-0002-6852-9296

resident

Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow

References

  1. Netesin ES, Kuznetsov SM, Golub IE. Clinical-laboratory control of anticoagulant therapy. Siberian Medical Journal (Irkutsk). 2007;70(3):109–113. (In Russ).
  2. Mironova AI, Kropacheva ES, Dobrovolsky AB, et al. Modern possibilities and prospects in evaluating the anticoagulant effect of direct oral anticoagulants. Atherothrombosis. 2022;12(1):20–28. (In Russ). doi: 10.21518/2307-1109-2022-12-1-20-28
  3. Antovic J, Kondratieva TB. Methods to monitor the therapy oral anticoagulants: the current problems. Clinical Medicine (Russian Jornal). 2018;96(2):101–105. (In Russ). doi: 10.18821/0023-2149-2018-96-2-101-105
  4. Shafiq H, Rashid A, Majeed A. Effects of different warfarin doses on IL-6 and COX-2 levels. Pakistan Armed Forces Medical Journal. 2016;66(5):673–675.
  5. Smythe MA, Priziola J, Dobesh PP, et al. Guidance for the practical management of the heparin anticoagulants in the treatment of venous thromboembolism J Thromb Thrombolysis. 2016;41(1): 165–186. doi: 10.1007/s11239-015-1315-2
  6. Ostapenko TV, Klimenko NJu, Ostapenko OV, i dr. Sulodeksid v korrekcii funkcii jendotelija i pokazatelej gemostaza u pacientov s postkovidnym sindromom. Cardiovascular Therapy and Prevention. 2022;21(S2):59–60. (In Russ).
  7. Wang P, Chi L, Zhang Z, et al. Heparin: an old drug for new clinical applications. Carbohydr Polym. 2022;295:119818. doi: 10.1016/j.carbpol.2022.119818
  8. Bignamini AA, Chebil A, Gambaro G, Matuška J. Sulodexide for diabetic-induced disabilities: a systematic review and meta-analysis. Adv Ther. 2021;38(3):1483–1513. doi: 10.1007/s12325-021-01620-1
  9. Zlobina DS, Koroleva LYu, Kovaleva GV, Zlobin MV. Efficiency and safety of the long-term therapy with direct oral anticoagulants at thromboembolism of the pulmonary artery in real clinical practice. University Proceedings. Volga Region. Medical Sciences. 2019;(3): 5–18. (In Russ). doi: 10.21685/2072-3032-2019-3-1
  10. Vinogradova AD, Malygin AS, Demidova MA. Anticoagulants in medical practice: literature review. Volga Medical Journal. 2020;19(4):27–31. (In Russ).
  11. Bea F, Kreuzer J, Preusch M, et al. Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26(12):2787–2792. doi: 10.1161/01.ATV.0000246797.05781.ad
  12. Moiseev S. Direct oral anticoagulants for prevention of recurrent stroke in patients with atrial fibrillation. Klinicheskaja farmakologija i terapija. 2021;30(3):57–66. (In Russ). doi: 10.32756/0869-5490-2021-3-57-66
  13. Bel’diev SN, Egorova IV, Platonov DJu. Recommendations on the use of oral anticoagulants in elderly patients: beers criteria and evidence-based medicine. Medicina. 2019;7(4):1–11. (In Russ). doi: 10.29234/2308-9113-2019-7-4-1-11
  14. Vishnevskij VI, Panina JuN. Modern aspects of treatment of patients with atrial fibrillation with new oral anticoagulants. Challenges in Modern Medicine. 2020;43(1):65–72. (In Russ). doi: 10.18413/2687-0940-2020-43-1-65-72
  15. Kadoglou NP, Moustardas P, Katsimpoulas M, et al. The beneficial effects of a direct thrombin inhibitor, dabigatran etexilate, on the development and stability of atherosclerotic lesions in apolipoprotein E-deficient mice: dabigatran etexilate and atherosclerosis. Cardiovasc Drugs Ther. 2012;26(5):367–374. doi: 10.1007/s10557-012-6411-3
  16. Testa L, Bhindi R, Agostoni P, et al. The direct thrombin inhibitor ximelagatran/melagatran: a systematic review on clinical applications and an evidence based assessment of risk benefit profile. Expert Opin Drug Saf. 2007;6(4):397–406. doi: 10.1517/14740338.6.4.397
  17. Antovic JP, Skeppholm M, Eintrei J, et al. Evaluation of coagulation assays versus LC-MS/MS for determinations of dabigatran concentrations in plasma. Eur J Clin Pharmacol. 2013; 69(11):1875–1881. doi: 10.1007/s00228-013-1550-4
  18. Katoh H, Nozue T, Michishita I. Anti-inflammatory effect of factor-Xa inhibitors in Japanese patients with atrial fibrillation. Heart Vessels. 2017;32(9):1130–1136. doi: 10.1007/s00380-017-0962-y
  19. Wu TC, Chan JS, Lee CY, et al. Rivaroxaban, a factor Xa inhibitor, improves neovascularization in the ischemic hindlimb of streptozotocin-induced diabetic mice. Cardiovasc Diabetol. 2015; 14:81. doi: 10.1186/s12933-015-0243-y
  20. Hara T, Fukuda D, Tanaka K, et al. Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice. Atherosclerosis. 2015; 242(2):639–646. doi: 10.1016/j.atherosclerosis.2015.03.023
  21. Zhou Q, Bea F, Preusch M, et al. Evaluation of plaque stability of advanced atherosclerotic lesions in apo E-deficient mice after treatment with the oral factor Xa inhibitor rivaroxaban. Mediators Inflamm. 2011;2011:432080. doi: 10.1155/2011/432080
  22. Al-Aieshy F, Malmström RE, Antovic J, et al. Clinical evaluation of laboratory methods to monitor exposure of rivaroxaban at trough and peak in patients with atrial fibrillation. Eur J Clin Pharmacol. 2016;72(6):671–679. doi: 10.1007/s00228-016-2060-y
  23. Skeppholm M, Al-Aieshy F, Berndtsson M, et al. Clinical evaluation of laboratory methods to monitor apixaban treatment in patients with atrial fibrillation. Thromb Res. 2015;136(1):148–153. doi: 10.1016/j.thromres.2015.04.030
  24. Gebekova ZA, Ivanov II, Asambayeva A, et al. Thrombodynamics test in assessing the risk of thrombus formation in patients with atrial fibrillation taking direct oral anticoagulants. Rational Pharmacotherapy in Cardiology. 2022;18(5):544–552. (In Russ). doi: 10.20996/1819-6446-2022-09-07
  25. Laine M, Lemesle G, Dabry T, et al. Bivalirudin during percutaneous coronary intervention in acute coronary syndromes. Expert Opin Pharmacother. 2019;20(3):295–304. doi: 10.1080/14656566.2018.1551361
  26. Sun Z, Lan X, Li S, et al. Comparisons of argatroban to lepirudin and bivalirudin in the treatment of heparin-induced thrombocytopenia: a systematic review and meta-analysis. Int J Hematol. 2017;106(4):476–483. doi: 10.1007/s12185-017-2271-8
  27. Averkov OV. bivalirudin and percutaneous coronary interventions in patients with acute coronary syndrome: theory and practice. Russian Journal of Cardiology. 2012;17(3):102–112. (In Russ).
  28. Kazennova JuS. Optimizacija diagnostiki i sposoby korrekcii zaderzhki razvitija ploda [dissertation]. Novosibirsk; 2006. Available from: http://www.piyavit.ru/index.php?vm=20.view.126 (In Russ).
  29. Piskunova JuA. Principy girudofarmakoterapii dlja profilaktiki i lechenija sindroma poteri ploda i gestoza u beremennyh s trombofiliej [dissertation]. Moscow; 2005. Available from: https://vivaldi.nlr.ru/bd000016531/details (In Russ).
  30. Mihajlova EV, Chirkova LD, Balabolkin MI, Klebanova EM. Primenenie pijavita pri saharnom diabete. Diabetes Mellitus. 1999;(2):26–27. (In Russ).
  31. Gilyazova AR, Samoilov AN. The study of the effect of the drug “piyavit” on the hemostatic system in patients with diabetic retinopathy. Kazan Medical Journal. 2011;92(4):516–519. (In Russ).
  32. Cai X, Hu D, Pan C, et al. The risk factors of glycemic control, blood pressure control, lipid control in Chinese patients with newly diagnosed type 2 diabetes. A nationwide prospective cohort study. Sci Rep. 2019;9(1):7709. doi: 10.1038/s41598-019-44169-4
  33. Schwartz SS, Epstein S, Corkey BE, et al. The time is right for a new classification system for diabetes: rationale and implications of the β-cell-centric classification Schema. Diabetes Care. 2016;39(2):179–186. doi: 10.2337/dc15-1585
  34. Ivanova NV, Jarosheva NA. Disbalans v sisteme gemostaza i jendotelial’naja disfunkcija u bol’nyh s diabeticheskoj retinopatiej. Journal of Ophthalmology. 2008;(3):33–38. (In Russ).
  35. Shelkovnikova TV, Shishljannikova NJu, Vavin GV, i dr. Izmenenija v sisteme gemostaza u pacientov s diabeticheskoj retinopatiej. Medical Alphabet. 2014;1(2):32–34. (In Russ).
  36. Leley SP, Ciulla TA, Bhatwadekar AD. Diabetic retinopathy in the aging population: a perspective of pathogenesis and treatment. Clin Interv Aging. 2021;16:1367–1378. doi: 10.2147/CIA.S297494
  37. Heng LZ, Comyn O, Peto T, et al. Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet Med. 2013;30(6):640–650. doi: 10.1111/dme.12089
  38. Mamedov TH, Narkevich AN. Detection of the signs of diabetic retinopathy using classification mathematical models. Journal of New Medical Technologies. 2021;28(2):107–110. (In Russ). doi: 10.24412/1609-2163-2021-2-107-110
  39. Nguyen TT, Wang JJ, Sharrett AR, et al. Relationship of retinal vascular caliber with diabetes and retinopathy: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care. 2008;31(3): 544–549. doi: 10.2337/dc07-1528
  40. Cai S, Liu TYA. Fluorescein angiography in diagnosis and treatment of diabetic retinopathy. Curr Diab Rep. 2021;21(9):30. doi: 10.1007/s11892-021-01398-0
  41. Ashraf M, Sampani K, AbdelAl O, et al. Disparity of microaneurysm count between ultrawide field colour imaging and ultrawide field fluorescein angiography in eyes with diabetic retinopathy. Br J Ophthalmol. 2020;104(12):1762–1767. doi: 10.1136/bjophthalmol-2019-315807
  42. Khalid H, Schwartz R, Nicholson L, et al. Widefield optical coherence tomography angiography for early detection and objective evaluation of proliferative diabetic retinopathy. Br J Ophthalmol. 2021;105(1):118–123. doi: 10.1136/bjophthalmol-2019-315365
  43. Virgili G, Menchini F, Casazza G. et al. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst Rev. 2015;1:CD008081. doi: 10.1002/14651858.CD008081.pub3
  44. Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the management of diabetic macular edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica. 2017;237(4):185–222. doi: 10.1159/000458539
  45. Gildea D. The diagnostic value of optical coherence tomography angiography in diabetic retinopathy: a systematic review. Int Ophthalmol. 2019;39(10):2413–2433. doi: 10.1007/s10792-018-1034-8
  46. Suciu CI, Suciu VI, Nicoara SD. Optical coherence tomography (angiography) biomarkers in the assessment and monitoring of diabetic macular edema. J Diabetes Res. 2020;2020:6655021. doi: 10.1155/2020/6655021
  47. Yurova OV, Turova EA, Morozova NE, et al. Treatment and secondary prophylaxis integrated approach at non-proliferative diabetic retinopathy. Ophthalmology in Russia. 2011;8(3):9–12. (In Russ).
  48. Avetisov SJe, Egorov EA, Moshetova LK, et al, editors. Oftal’mologija. Nacional’noe rukovodstvo. Kratkoe izdanie. Moscow: GJeOTAR-Media; 2014. 736 p. (In Russ).
  49. Filippov VM, Petrachkov DV, Budzinskaya MV, Matyushchenko AG. The role of neurodegeneration biomarkers in the management of patients with diabetic retinopathy. The Russian Annals of Ophthalmology. 2021;137(5-2):314–322. (In Russ). doi: 10.17116/oftalma2021137052314
  50. Jarilin AA. Immunologija. Moscow: GJeOTAR-Media; 2010. 752 p. (In Russ).

Copyright (c) 2023 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies