Diagnostic and therapeutic aspects of neuregulin-1: A review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In recent decades, the prospect of using a biomarker strategy for early personalized diagnosis of cardiovascular pathologies has been actively explored. The use of new markers appears promising, and the search for an “ideal” marker is actively ongoing, which will make it possible to understand various mechanisms of cardiovascular diseases. In recent years, scientists have actively focused on studying the role of neuregulin-1 as a laboratory biological marker in cardiac pathology. Neuregulins belong to a superfamily of epidermal growth factors that are synthesized by the vascular endothelium in response to ischemia, adrenergic stimulation, and oxidative stress.

Several studies have shown the potentially important diagnostic and prognostic value of assessing neuregulin-1 as a biological marker. Thus, further scientific and clinical studies will demonstrate the possibility of using this marker as an additional laboratory tool for diagnosing, risk stratifying, and predicting cardiovascular events in patients with cardiovascular pathology. The therapeutic effect of recombinant neuregulin-1 on reducing morbidity and mortality in patients with cardiac disorders require more detailed assessments.

 

About the authors

Amina M. Alieva

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Med.), associate professor

Russian Federation, 1 Ostrovityanova street, 117997, Moscow

Natalia V. Teplova

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680
SPIN-code: 9056-1948

MD, Dr. Sci. (Med.), professor

Russian Federation, 1 Ostrovityanova street, 117997, Moscow

Elena V. Reznik

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-code: 3494-9080

MD, Dr. Sci. (Med.), professor

Russian Federation, 1 Ostrovityanova street, 117997, Moscow

Elena I. Strangul

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: strangul@mail.ru
ORCID iD: 0000-0001-5928-7569

senior laboratory assistant

Russian Federation, 1 Ostrovityanova street, 117997, Moscow

Irina E. Baikova

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-code: 3054-8884

MD, Cand. Sci. (Med.), assistant professor

Russian Federation, 1 Ostrovityanova street, 117997, Moscow

Irina A. Kotikova

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499

student

Russian Federation, 1 Ostrovityanova street, 117997, Moscow

Yuliya A. Shikhova

Scientific-Clinical Center №2 of the Russian Research Center for Surgery named after Academician B.V. Petrovsky

Email: shikyula@mail.ru
ORCID iD: 0000-0003-4688-4385

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Elvira A. Khachirova

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: elchik09@mail.ru
ORCID iD: 0000-0003-2523-8907

MD, Cand. Sci. (Med.)

Russian Federation, 1 Ostrovityanova street, 117997, Moscow

Ramiz K. Valiev

The Loginov Moscow Clinical Scientific Center

Email: radiosurgery@bk.ru
ORCID iD: 0000-0003-1613-3716
SPIN-code: 2855-2867

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Igor G. Nikitin

Pirogov Russian National Research Medical University (Pirogov Medical University)

Author for correspondence.
Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-code: 3595-1990

MD, Dr. Sci. (Med.), professor

Russian Federation, 1 Ostrovityanova street, 117997, Moscow

References

  1. Kopeva KV, Grakova EV, Teplyakov AT. New biomarkers of heart failure: diagnostic and prognostic value of NT-proBNP and interleukin receptor family member ST2. Kompleksnye problemy serdechno-sosudistyh zabolevanij. 2018;7(1):94–101. (In Russ). doi: 10.17802/2306-1278-2018-7-1-94-101
  2. Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. (In Russ). doi: 10.20514/2226-6704-2018-8-5-333-345
  3. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–3726. doi: 10.1093/eurheartj/ehab368
  4. Alieva AM, Almazova II, Pinchuk TV, et al. Fractalkin and cardiovascular disease. Consilium Medicum. 2020;22(5):83–86. (In Russ). doi: 10.26442/20751753.2020.5.200186
  5. Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ). doi: 10.26442/20751753.2021.10.201113
  6. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microRNA and heart failure. Therapy. 2022;8(1):60–70. (In Russ). doi: 10.18565/therapy.2022.1.60-70.
  7. Ostanko VL, Kalacheva TP, Kalyuzhina EV, et al. Biological markers in risk stratification and progression of cardiovascular disease: present and future. Bulletin of Siberian Medicine. 2018;17(4):264–280. (In Russ). doi: 10.20538/1682-0363-2018-4-264-280
  8. Lin Y, Liu H, Wang X. Neuregulin-1, a microvascular endothelial-derived protein, protects against myocardial ischemia-reperfusion injury (review). Int J Mol Med. 2020;46(3):925–935. doi: 10.3892/ijmm.2020.4662
  9. Wang Y, Wei J, Zhang P, et al. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol. 2022;13:945206. doi: 10.3389/fphar.2022.945206
  10. Galindo CL, Ryzhov S, Sawyer DB. Neuregulin as a heart failure therapy and mediator of reverse remodeling. Curr Heart Fail Rep. 2014;11(1):40–49. doi: 10.1007/s11897-013-0176-2
  11. Mendes-Ferreira P, De Keulenaer GW, Leite-Moreira AF, Brás-Silva C. Therapeutic potential of neuregulin-1 in cardiovascular disease. Drug Discov Today. 2013;18(17-18):836–842. doi: 10.1016/j.drudis.2013.01.010
  12. Chen M, Bi LL, Wang ZQ, et al. Time-dependent regulation of neuregulin-1beta/ErbB/ERK pathways in cardiac differentiation of mouse embryonic stem cells. Mol Cell Biochem. 2013;380(1-2): 67–72. doi: 10.1007/s11010-013-1658-y
  13. Cacciapuoti M, Johnson B, Kapdia A, et al. The role of neuregulin and stem cells as therapy post-myocardial infarction. Stem Cells Dev. 2020;29(19):1266–1274. doi: 10.1089/scd.2020.0099
  14. Cui W, Tao J, Wang Z, et al. Neuregulin1beta1 antagonizes apoptosis via ErbB4-dependent activation of PI3-kinase/Akt in APP/PS1 transgenic mice. Neurochem Res. 2013;38(11):2237–2246. doi: 10.1007/s11064-013-1131-z
  15. Baliga RR, Pimental DR, Zhao YY, et al. NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K), and MEK-MAPK-RSK. Am J Physiol. 1999;277(5):H2026–2037. doi: 10.1152/ajpheart.1999.277.5.H2026
  16. Kang W, Cheng Y, Zhou F, et al. Neuregulin-1 protects cardiac function in septic rats through multiple targets based on endothelial cells. Int J Mol Med. 2019;44(4):1255–1266. doi: 10.3892/ijmm.2019.4309
  17. Lemmens K, Fransen P, Sys SU, et al. Neuregulin-1 induces a negative inotropic effect in cardiac muscle: role of nitric oxide synthase. Circulation. 2004;109(3):324–326. doi: 10.1161/01.CIR.0000114521.88547.5E
  18. Hedhli N, Huang Q, Kalinowski A, et al. Endothelium-derived neuregulin protects the heart against ischemic injury. Circulation. 2011;123(20):2254–2262. doi: 10.1161/CIRCULATIONAHA.110.991125
  19. Fang SJ, Wu XS, Han ZH, et al. Neuregulin-1 preconditioning protects the heart against ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Chin Med J (Engl). 2010;123(24):3597–3604.
  20. Rohrbach S, Yan X, Weinberg EO, et al. Neuregulin in cardiac hypertrophy in rats with aortic stenosis. Differential expression of erbB2 and erbB4 receptors. Circulation. 1999;100(4):407–412. doi: 10.1161/01.cir.100.4.407
  21. Gui C, Zhu L, Hu M, et al. Neuregulin-1/ErbB signaling is impaired in the rat model of diabetic cardiomyopathy. Cardiovasc Pathol. 2012;21(5):414–420. doi: 10.1016/j.carpath.2011.12.006
  22. Rohrbach S, Niemann B, Silber RE, Holtz J. Neuregulin receptors erbB2 and erbB4 in failing human myocardium — depressed expression and attenuated activation. Basic Res Cardiol. 2005;100(3):240–249. doi: 10.1007/s00395-005-0514-4
  23. Xu Z, Jiang J, Ford G, Ford BD. Neuregulin-1 is neuroprotective and attenuates inflammatory responses induced by ischemic stroke. Biochem Biophys Res Commun. 2004;322(2):440–446. doi: 10.1016/j.bbrc.2004.07.149
  24. Vermeulen Z, Hervent A-S, Dugaucquier L, et al. Inhibitory actions of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in the heart, skin, and lung. Am J Physiol Heart Circ Physiol. 2017;313(5):H934–H945. doi: 10.1152/ajpheart.00206.201
  25. Schumacher MA, Hedl M, Abraham C, et al. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death Dis. 2017;8(2):e2622–e2622. doi: 10.1038/cddis.2017.42
  26. Ryzhov S, Matafonov A, Galindo CL, et al. ERBB signaling attenuates proinflammatory activation of nonclassical monocytes. Am J Physiol Heart Circ Physiol. 2017;312(5):H907–H918. doi: 10.1152/ajpheart.00486.2016
  27. Wu L, Walas S, Leung W, et al. Neuregulin1-β decreases IL-1β- induced neutrophil adhesion to human brain microvascular endothelial cells. Transl Stroke Res. 2015;6(2):116–124. doi: 10.1007/s12975-014-0347-9
  28. Shchendrigina АА, Zhbanov KА, Privalova EV, et al. Circulating neuregulin-1 and chronic heart failure with preserved ejection. Kardiologiia. 2020;60(11):128–136. (In Russ). doi: 10.18087/cardio.2020.11.n1222
  29. Geisberg C, Pentassuglia L, Sawyer DB. Cardiac side effects of anticancer treatments: new mechanistic insights. Curr Heart Fail Rep. 2012;9(3):211–218. doi: 10.1007/s11897-012-0098-4
  30. Sitia L, Sevieri M, Signati L, et al. HER-2-targeted nanoparticles for breast cancer diagnosis and treatment. Cancers (Basel). 2022;14(10):2424. doi: 10.3390/cancers14102424
  31. Lin M, Xiong W, Wang S, et al. The research progress of trastuzumab-induced cardiotoxicity in HER-2-positive breast cancer treatment. Front Cardiovasc Med. 2022;8:821663. doi: 10.3389/fcvm.2021.821663
  32. Perez EA, Dang C, Lee C, et al. Incidence of adverse events with therapies targeting HER2-positive metastatic breast cancer: a literature review. Breast Cancer Res Treat. 2022;194(1):1–11. doi: 10.1007/s10549-021-06469-0
  33. Ebrahim N, Al Saihati HA, Mostafa O, et al. Prophylactic evidence of MSCs-derived exosomes in doxorubicin/trastuzumab-induced cardiotoxicity: beyond mechanistic target of NRG-1/Erb signaling pathway. Int J Mol Sci. 2022;23(11):5967. doi: 10.3390/ijms23115967
  34. Kurokawa YK, Shang MR, Yin RT, George SC. Modeling trastuzumab-related cardiotoxicity in vitro using human stem cell-derived cardiomyocytes. Toxicol Lett. 2018;285:74–80. doi: 10.1016/j.toxlet.2018.01.001
  35. Kuramochi Y, Cote GM, Guo X, et al. Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem. 2004;279(49):51141–51147. doi: 10.1074/jbc.M408662200
  36. Lemmens K, Doggen K, De Keulenaer GW. Activation of the neuregulin/ErbB system during physiological ventricular remodeling in pregnancy. Am J Physiol Heart Circ Physiol. 2011;300(3): H931–H942. doi: 10.1152/ajpheart.00385.2010
  37. Moondra V, Sarma S, Buxton T, et al. Serum neuregulin-1beta as a biomarker of cardiovascular fitness. Open Biomark J. 2009:2:1–5. doi: 10.2174/1875318300902010001
  38. Cai MX, Shi XC, Chen T, et al. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sci. 2016;149:1–9. doi: 10.1016/j.lfs.2016.02.055
  39. Rohrbach S, Niemann B, Abushouk AM, Holtz J. Caloric restriction and mitochondrial function in the ageing myocardium. Exp Gerontol. 2006;41(5):525–531. doi: 10.1016/j.exger.2006.02.001
  40. Geissler A, Ryzhov S, Sawyer DB. Neuregulins: protective and reparative growth factors in multiple forms of cardiovascular disease. Clin Sci (Lond). 2020;134(19):2623–2643. doi: 10.1042/CS20200230
  41. Zhbanov KA, Shchendrygina AA, Zheleznykh EA, et al. Plasma level’s of neuregulin-1 in healthy people. Rational Pharmacotherapy in Cardiology. 2021;17(6):853–859. (In Russ). doi: 10.20996/1819-6446-2021-11-01
  42. Shao Q, Liu H, Ng CY, et al. Circulating serum levels of growth differentiation factor-15 and neuregulin-1 in patients with paroxysmal non-valvular atrial fibrillation. Int J Cardiol. 2014;172(2):e311–e313. doi: 10.1016/j.ijcard.2013.12.173
  43. Geisberg CA, Wang G, Safa RN, et al. Circulating neuregulin-1β levels vary according to the angiographic severity of coronary artery disease and ischemia. Coron Artery Dis. 2011;22(8):577–582. doi: 10.1097/MCA.0b013e32834d3346
  44. Ky B, Kimmel SE, Safa RN, et al. Neuregulin-1 beta is associated with disease severity and adverse outcomes in chronic heart failure. Circulation. 2009;120(4):310–317. doi: 10.1161/CIRCULATIONAHA.109.856310
  45. Miao J, Huang S, Su YR, et al. Effects of endogenous serum neuregulin-1β on morbidity and mortality in patients with heart failure and left ventricular systolic dysfunction. Biomarkers. 2018;23(7): 704–708. doi: 10.1080/1354750X.2018.1485054
  46. Tian QP, Liu ML, Tang CS, et al. Association of circulating neuregulin-4 with presence and severity of coronary artery disease. Int Heart J. 2019;60(1):45–49. doi: 10.1536/ihj.18-130
  47. Huang M, Zheng J, Chen Z, et al. The relationship between circulating neuregulin-1 and coronary collateral circulation in patients with coronary artery disease. Int Heart J. 2020;61(1):115–120. doi: 10.1536/ihj.19-277
  48. Lim SL, Lam CSP, Segers VF, et al. Cardiac endothelium–myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. Eur Heart J. 2015;36(31):2050–2060. doi: 10.1093/eurheartj/ehv132
  49. Kivelä R, Hemanthakumar Karthik A, Vaparanta K, et al. Endothelial cells regulate physiological cardiomyocyte growth via VEGFR2-mediated paracrine signaling. Circulation. 2019;139(22):2570–2584. doi: 10.1161/CIRCULATIONAHA.118.036099
  50. Gutiérrez E, Flammer AJ, Lerman LO, et al. Endothelial dysfunction over the course of coronary artery disease. Eur Heart J. 2013;34(41):3175–3181. doi: 10.1093/eurheartj/eht351
  51. Rahimzadeh M, Farshidi N, Naderi N, et al. Clinical significance of serum concentrations of neuregulin-4, in acute coronary syndrome. Sci Rep. 2020;10(1):5797. doi: 10.1038/s41598-020-62680-x
  52. Odiete O, Hill MF, Sawyer DB. Neuregulin in cardiovascular development and disease. Circ Res. 2012;111(10):1376–1385. doi: 10.1161/CIRCRESAHA.112.267286
  53. De Keulenaer GW, Feyen E, Dugaucquier L, et al. Mechanisms of the multitasking endothelial protein nrg-1 as a compensatory factor during chronic heart failure. Circ Heart Fail. 2019;12(10):e006288. doi: 10.1161/CIRCHEARTFAILURE.119.006288
  54. Panutsopulos D, Arvanitis DL, Tsatsanis C, et al. Expression of heregulin in human coronary atherosclerotic lesions. J Vasc Res. 2005;42(6):463–474. doi: 10.1159/000088100
  55. Xu G, Watanabe T, Iso Y, et al. Preventive effects of heregulin-beta1 on macrophage foam cell formation and atherosclerosis. Circ Res. 2009;105(5):500–510. doi: 10.1161/CIRCRESAHA.109.193870
  56. Wang JF, Li FH, Shen DL, et al. Effect of neuregulin-1 on cardiac glucose metabolism in rats with experimental myocardial infarction. Zhonghua Xin Xue Guan Bing Za Zhi. 2021;49(9):912–919. doi: 10.3760/cma.j.cn112148-20210628-00549
  57. Wang F, Wang H, Liu X, et al. Neuregulin-1 alleviate oxidative stress and mitigate inflammation by suppressing NOX4 and NLRP3/caspase-1 in myocardial ischaemia-reperfusion injury. J Cell Mol Med. 2021;25(3):1783–1795. doi: 10.1111/jcmm.16287
  58. Zeng Z, Gui C, Nong Q, et al. Serum neuregulin-1β levels are positively correlated with VEGF and angiopoietin-1 levels in patients with diabetes and unstable angina pectoris. Int J Cardiol. 2013;168(3):3077–3079. doi: 10.1016/j.ijcard.2013.04.088
  59. Dugaucquier L, Feyen E, Mateiu L, et al. The role of endothelial autocrine NRG1/ERBB4 signaling in cardiac remodeling. Am J Physiol Heart Circ Physiol. 2020;319(2):H443–H455. doi: 10.1152/ajpheart.00176.2020
  60. Shakeri H, Boen JRA, De Moudt S, et al. Neuregulin-1 compensates for endothelial nitric oxide synthase deficiency. Am J Physiol Heart Circ Physiol. 2021;320(6):H2416–H2428. doi: 10.1152/ajpheart.00914.2020
  61. Shiraishi M, Yamaguchi A, Suzuki K. Nrg1/ErbB signaling-mediated regulation of fibrosis after myocardial infarction. FASEB J. 2022;36(2):e22150. doi: 10.1096/fj.202101428RR
  62. Zurek M, Johansson E, Palmer M, et al. Neuregulin-1 induces cardiac hypertrophy and impairs cardiac performance in post-myocardial infarction rats. Circulation. 2020;142(13):1308–1311. doi: 10.1161/CIRCULATIONAHA.119.044313
  63. Li N, Hang W, Shu H, Zhou N. RBM20, a therapeutic target to alleviate myocardial stiffness via titin isoforms switching in HFpEF. Front Cardiovasc Med. 2022;9:928244. doi: 10.3389/fcvm.2022.928244
  64. LeWinter MM, Granzier H. Cardiac titin: a multifunctional giant. Circulation. 2010;121(19):2137–2145. doi: 10.1161/CIRCULATIONAHA.109.860171
  65. Borbély A, Falcao-Pires I, van Heerebeek L, et al. Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ Res. 2009;104(6):780–786. doi: 10.1161/CIRCRESAHA.108.193326
  66. Hopf AE, Andresen C, Kötter S, et al. Diabetes-induced cardiomyocyte passive stiffening is caused by im paired insulin-dependent titin modification and can be modulated by neuregulin-1. Circ Res. 2018;123(3):342–355. doi: 10.1161/CIRCRESAHA.117.312166
  67. Adão R, Mendes-Ferreira P, Maia-Rocha C, et al. Neuregulin-1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension. Clin Exp Pharmacol Physiol. 2019;46(3): 255–265. doi: 10.1111/1440-1681.13043
  68. Zhbanov KA, Shchendrygina AA, Salakheeva EY, et al. The prognostic value of neuregulin-1β in heart failure patients with preserved ejection fraction. Kardiologiia. 2022;62(9):3–8. (In Russ). doi: 10.18087/cardio.2022.9.n2241
  69. Zhbanov KA, Salakheeva EYu, Sokolova IY, et al. Neuregulin-1β, biomarkers of inflammation and myocardial fibrosis in heart failure patients. Rational Pharmacotherapy in Cardiology. 2022;18(5): 522–529. (In Russ). doi: 10.20996/1819-6446-2022-09-05
  70. Hage C, Wärdell E, Linde C, et al. Circulating neuregulin1-β in heart failure with preserved and reduced left ventricular ejection fraction. ESC Heart Fail. 2020;7(2):445–455. doi: 10.1002/ehf2.12615
  71. Jabbour A, Hayward CS, Keogh AM, et al. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail. 2011;13(1):83–92. doi: 10.1093/eurjhf/hfq152
  72. Gao R, Zhang J, Cheng L, et al. A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol. 2010;55(18):1907–1914. doi: 10.1016/j.jacc.2009.12.044
  73. Lenihan DJ, Anderson SA, Lenneman CG, et al. A phase I, single ascending dose study of cimaglermin alfa (neuregulin 1β3) in patients with systolic dysfunction and heart failure. JACC Basic Transl Sci. 2016;1(7):576–586. doi: 10.1016/j.jacbts.2016.09.005
  74. Zhou Q, Pan X, Wang L, et al. The protective role of neuregulin-1: a potential therapy for sepsis-induced cardiomyopathy. Eur J Pharmacol. 2016;788:234–240. doi: 10.1016/j.ejphar.2016.06.042
  75. Mendes-Ferreira P, Maia-Rocha C, Adão R, et al. Neuregulin-1 improves right ventricular function and attenuates experimental pulmonary arterial hypertension. Cardiovasc Res. 2016;109(1):44–54. doi: 10.1093/cvr/cvv244
  76. Xiao J, Li B, Zheng Z, et al. Therapeutic effects of neuregulin-1 gene transduction in rats with myocardial infarction. Coron Artery Dis. 2012;23(7):460–468. doi: 10.1097/MCA.0b013e32835877da
  77. Wu C, Gui C, Li L, et al. Expression and secretion of neuregulin-1 in cardiac microvascular endothelial cells treated with angiogenic factors. Exp Ther Med. 2018;15(4):3577–3581. 10.3892/etm.2018.5811
  78. Gui C, Zeng ZY, Chen Q, et al. Neuregulin-1 promotes myocardial angiogenesis in the rat model of diabetic cardiomyopathy. Cell Physiol Biochem. 2018;46(6):2325–2334. doi: 10.1159/000489622

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Role of NRG-1 in physiological and pathological stress.

Download (478KB)

Copyright (c) 2023 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies