Modern aspects of diagnosis and treatment of subjective manifestations and accommodation disorders in patients — professional users of personal computers (systematic review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A systematic review was performed in the RSCI and PubMed databases using the following keywords: “Computer vision syndrome,” “Digital eye strain,” “Accommodation,” “Accommodative asthenopia,” “RTS,” and “Quality of life”. Eligible articles were evaluated in accordance with the criteria for prospective or retrospective studies. A total of 792 sources were analyzed, further using systematic review filters and authors’ knowledge of the topic. The retrospective analysis spanned 7 years (2016–2022).

Data indicated that accommodative asthenopia (AA), as a functional visual disorder, is a natural state of the accommodative system of the eye caused by long-term exposure to visually intense work on a personal computer. AA is characterized by a wide range of subjective manifestations (complaints) and indicators of the examination of the patient’s vision, associated primarily with objective accommodation. A differentiated approach to the diagnosis of various forms of AA, such as habitual excessive stress of accommodation and asthenic form of accommodative asthenopia, is important to provide adequate treatment based on methods with direct physical effects on the eye (such as low-energy laser radiation, magnetophoresis, and stimulation of accommodation), opto-reflex treatment, and an outpatient course as part of home training.

About the authors

Elena I. Belikova

Federal Scientific Clinical Center

Author for correspondence.
Email: elen-belikova@yandex.ru
ORCID iD: 0000-0001-9646-4747
SPIN-code: 8382-4588

MD, Dr. Sci. (Med.), associate professor

Russian Federation, 6 Poklonnaya street, 121170 Moscow

Denis V. Gatilov

Federal Scientific Clinical Center

Email: dgatilov@yandeex.ru
ORCID iD: 0009-0001-4075-3512
SPIN-code: 5371-7211
Russian Federation, Moscow

Nikolai I. Ovechkin

Helmholtz National Medical Research Center for Eye Diseases

Email: n.ovechkin@gmail.com
ORCID iD: 0000-0002-1056-5422
SPIN-code: 1794-5567

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Erika N. Eskina

Federal Scientific Clinical Center

Email: erika.eskina@sfe.ru
ORCID iD: 0000-0001-7714-6196
SPIN-code: 7453-5521

MD, Dr. Sci. (Med.), associate professor

Russian Federation, Moscow

References

  1. Ranasinghe P, Wathurapatha WS, Perera YS, et al. Computer vision syndrome among computer office workers in a developing country: an evaluation of prevalence and risk factors. BMC Res Notes. 2016;9(3)150. doi: 10.1186/s13104-016-1962-1
  2. Zalat MM, Amer SM, Wassif GA, et al. Computer vision syndrome, visual ergonomics and amelioration among staff members in a Saudi medical college. Int J Occup Saf Ergon. 2022;28(2):1033–1041. doi: 10.1080/10803548.2021.1877928
  3. Long J, Cheung R, Duong S, et al. Viewing distance and eyestrain symptoms with prolonged viewing of smartphones. Clin Exp Optom. 2017;100(2):133–137. doi: 10.1111/cxo.12453
  4. Vaz FT, Henriques SP, Silva DS, et al. Digital asthenopia: portuguese group of ergophthalmology survey. Acta Med Port. 2019;32(4):260–265. doi: 10.20344/amp.10942
  5. Lema AK, Anbesu EW. Computer vision syndrome and its determinants: a systematic review and meta-analysis. SAGE Open Med. 2022;10:20503121221142402. doi: 10.1177/20503121221142402
  6. Artime-Ríos E, Suárez-Sánchez A, Sánchez-Lasheras F, et al. Computer vision syndrome in healthcare workers using video display terminals: an exploration of the risk factors. J Adv Nurs. 2022;78(7):2095–2110. doi: 10.1111/jan.15140
  7. Noreen K, Ali K, Aftab K, et al. Computer vision syndrome (CVS) and its associated risk factors among undergraduate medical students in midst of COVID-19. Pak J Ophthalmol 2021;37(1): 102–108. doi: 10.36351/pjo.v37i1.1124
  8. Iqbal M, Said O, Ibrahim O, et al. Visual sequelae of computer vision syndrome: a cross-sectional case-control study. J Ophthalmol. 2021;2021:6630286. doi: 10.1155/2021/6630286
  9. Touma Sawaya RI, El Meski N, Saba JB, et al. Asthenopia among university students: the eye of the digital generation. J Family Med Prim Care. 2020;9(8):3921–3932. doi: 10.4103/jfmpc.jfmpc_340_20
  10. Wangsan K, Upaphong P, Assavanopakun P, et al. Self-reported computer vision syndrome among thai university students in virtual classrooms during the COVID-19 pandemic: prevalence and associated factors. Int J Environ Res Public Health. 2022;19(7):3996. doi: 10.3390/ijerph19073996
  11. Adane F, Alamneh YM, Desta M. Computer vision syndrome and predictors among computer users in Ethiopia: a systematic review and meta-analysis. Trop Med Health. 2022;50(1):26. doi: 10.1186/s41182-022-00418-3
  12. Al Rashidi SH, Alhumaidan H. Computer vision syndrome prevalence, knowledge and associated factors among Saudi Arabia University students: is it a serious problem? Int J Health Sci (Qassim). 2017;11(5):17–19.
  13. Turkistani AN, Al-Romaih A, Alrayes MM, et al. Computer vision syndrome among Saudi population: an evaluation of prevalence and risk factors. J Family Med Prim Care. 2021;10(6):2313–2318. doi: 10.4103/jfmpc.jfmpc_2466_20
  14. Assefa NL, Weldemichael DZ, Alemu HW, et al. Prevalence and associated factors of computer vision syndrome among bank workers in Gondar City, northwest Ethiopia, 2015. Clin Optom (Auckl). 2017;9:67–76. doi: 10.2147/OPTO.S126366
  15. Munshi S, Varghese A, Dhar-Munshi S. Computer vision syndrome — a common cause of unexplained visual symptoms in the modern era. Int J Clin Pract. 2017;71(7):e12962. doi: 10.1111/ijcp.12962
  16. Altalhi A, Khayyat W, Khojah O, et al. Computer vision syndrome among health sciences students in Saudi Arabia: prevalence and risk factors. Cureus. 2020;12(2):e7060. doi: 10.7759/cureus.7060
  17. Korotkikh SA, Nikiforov AA. Investigation of reliability and validity of computer visual syndrome complaints questionnaire. Sovremennaja optometrija. 2017;8:18–22. (In Russ).
  18. Ovechkin IG, Konovalov ME, Leksunov OG, et al. The main subjective manifestations of computer vision syndrome. Russian Ophthalmological Journal. 2021;14(3):83–87. (In Russ). doi: 10.21516/2072-0076-2021-14-3-83-87
  19. Bogdănici CM, Săndulache DE, Nechita CA. Eyesight quality and computer vision syndrome. Rom J Ophthalmol. 2017;61(2):112–116. doi: 10.22336/rjo.2017.21
  20. Dessie A, Adane F, Nega A, et al. Computer vision syndrome and associated factors among computer users in Debre Tabor town, Northwest Ethiopia. J Environ Public Health. 2018;2018:4107590. doi: 10.1155/2018/4107590
  21. Köksoy Vayısoğlu S, Öncü E, Dursun Ö, Dinç E. Investigation of dry eye symptoms in lecturers by ocular surface disease index. Turk J Ophthalmol. 2019;49(3):142–148. doi: 10.4274/tjo.galenos.2018.67915
  22. Ovechkin IG, Yudin VE, Kovrigina EI, et al. methodological principles for the development of a questionnaire “quality of life” in patients with computer visual syndrome. Ophthalmology in Russia. 2021;18(4): 926–931. (In Russ). doi: 10.18008/1816-5095-2021-4-926-931
  23. Proskurina OV, Tarutta EP, Iomdina EN, et al. A modern classification of asthenopias: clinical forms and stages. Russian Ophthalmological Journal. 2016;9(4):69–73. (In Russ). doi: 10.21516/2072-0076-2016-9-4-69-73
  24. Kovrigina EI, Ovechkin IG, Konovalov ME, Yudin VE. Clinical efficacy of different methods for assessing the quality of life in patients with computer visual syndrome. Saratov Journal of Medical Scientific Research. 2021;17(3):646–649. (In Russ).
  25. Xue WW, Zou HD. Rasch analysis of the Chinese version of the Low Vision Quality of Life Questionnaire. Zhonghua Yan Ke Za Zhi. 2019; 55(8):582–588. doi: 10.3760/cma.j.issn.0412-4081.2019.08.007
  26. Şahlı E, İdil ŞA. İdil comparison of quality of life questionnaires in patients with low vision. Turk J Ophthalmol. 2021;51(2):83–88. doi: 10.4274/tjo.galenos.2020.99975
  27. Hua L, Zhu H, Li R, et al. Development of a quality of life questionnaire for adults with anisometropic amblyopia. Zhonghua Yan Ke Za Zhi. 2021;57(5):341–347. doi: 10.3760/cma.j.cn112142-20200611-00392
  28. Grzybowski A, Kanclerz P, Muzyka-Woźniak M. Methods for evaluating quality of life and vision in patients undergoing lens refractive surgery. Graefes Arch Clin Exp Ophthalmol. 2019;257(6):1091–1099. doi: 10.1007/s00417-019-04270-w
  29. Midorikawa-Inomata A, Inomata T, Nojiri S, et al. Reliability and validity of the Japanese version of the Ocular Surface Disease Index for dry eye disease. BMJ Open. 2019;9(11):e033940. doi: 10.1136/bmjopen-2019-033940
  30. Whyte MB, Kelly P. The normal range: it is not normal and it is not a range. Postgrad Med J. 2018;94(1177):613–616. doi: 10.1136/postgradmedj-2018-135983
  31. Wajuihian SO. Normative values for clinical measures used to classify accommodative and vergence anomalies in a sample of high school children in South Africa. J Optom. 2019;12(3):143–160. doi: 10.1016/j.optom.2018.03.005
  32. Hussaindeen JR, Rakshit A, Singh NK, et al. Binocular vision anomalies and normative data (BAND) in Tamil Nadu: report 1. Clin Exp Optom. 2017;100(3):278–284. doi: 10.1111/cxo.12475
  33. Yammouni R, Evans BJW. Is reading rate in digital eyestrain influenced by binocular and accommodative anomalies? J Optom. 2021;14(3):229–239. doi: 10.1016/j.optom.2020.08.006
  34. Mushkova IA, Maychuk NV, Karimova AN, Shamsetdinova LT. Detection of the risk factors for postoperative asthenopia in patients with refractive disorders. Ophthalmology in Russia. 2018;15(2): 205–210. (In Russ). doi: 10.18008/1816-5095-2018-2S-205-210
  35. Parmar KR, Dickinson C, Evans BJW. Does an iPad fixation disparity test give equivalent results to the Mallett near fixation disparity test? J Optom. 2019;12(4):222–231. doi: 10.1016/j.optom.2019.03.002
  36. Boadi-Kusi SB, Abu SL, Acheampong GO, et al. Association between poor ergophthalmologic practices and computer vision syndrome among university administrative staff in Ghana. J Environ Public Health. 2020;2020:7516357. doi: 10.1155/2020/7516357
  37. Al Tawil L, Aldokhayel S, Zeitouni L, et al. Prevalence of self-reported computer vision syndrome symptoms and its associated factors among university students. Eur J Ophthalmol. 2020;30(1): 189–195. doi: 10.1177/1120672118815110
  38. Lara F, Del Águila-Carrasco AJ, Marín-Franch I, et al. The effect of retinal illuminance on the subjective amplitude of accommodation. Optom Vis Sci. 2020;97(8):641–647. doi: 10.1097/OPX.0000000000001544
  39. Kashif RF, Rashad MA, Said AMA, et al. Ultrasound biomicroscopy study of accommodative state in smartphone abusers. BMC Ophthalmol. 2022;22(1):330. doi: 10.1186/s12886-022-02557-x
  40. Fernández-Vigo JI, Kudsieh B, Shi H, et al. Diagnostic imaging of the ciliary body: technologies, outcomes, and future perspectives. Eur J Ophthalmol. 2022;32(1):75–88. doi: 10.1177/11206721211031409
  41. Aboumourad R, Anderson HA. Comparison of dynamic retinoscopy and autorefraction for measurement of accommodative amplitude. Optom Vis Sci. 2019;96(9):670–677. doi: 10.1097/OPX.0000000000001423
  42. Tarutta EP, Aklaeva NA, Tarasova NA, et al. Objective parameters of accommodation in concomitant strabismus. The Russian Annals of Ophthalmology. 2019;135(6):11–16. (In Russ). doi: 10.17116/oftalma201913506111
  43. Atchison DA. The use of autorefractors using the image-size principle in determining on-axis and off-axis refraction. Part 3: theoretical effect of pupil misalignment on peripheral refraction for the Grand-Seiko autorefractor. Ophthalmic Physiol Opt. 2022; 42(3):653–657. doi: 10.1111/opo.12964
  44. Morrison AM, Mutti DO. Repeatability and validity of peripheral refraction with two different autorefractors. Optom Vis Sci. 2020; 97(6):429–439. doi: 10.1097/OPX.0000000000001520
  45. Kajita M, Muraoka T, Orsborn G. Changes in accommodative micro-fluctuations after wearing contact lenses of different optical designs. Cont Lens Anterior Eye. 2020;43(5):493–496. doi: 10.1016/j.clae.2020.03.003
  46. Ovechkin IG, Gadzhiev IS, Kozhukhov AA, et al. Diagnostic criteria for asthenic accommodative asthenopia in patients with computer vision syndrome. Russian Journal of Clinical Ophthalmology. 2020;20(4):169–174. doi: 10.32364/2311-7729-2020-20-4-169-174
  47. Makhova MV, Strakhov VV. Interaction of accommodative and subjective diagnostic criteria of accommodation disorders. Russian Ophthalmological Journal. 2019;12(3):13–19. (In Russ). doi: 10.21516/2072-0076-2019-12-3-13-19
  48. Kumar V, Kovrigina EI, Kozhukhov AA, et al. Clinical regulation of asthenopia severity based on the “CVS-22” quality of life questionnaire for patients with computer visual syndrome. Saratov Journal of Medical Scientific Research. Supplement: Ophthalmology. 2022;18(4):691–694. (In Russ).
  49. Moldovan HR, Voidazan ST, Moldovan G, et al. Accommodative asthenopia among Romanian computer-using medical students-A neglected occupational disease. Arch Environ Occup Health. 2020;75(4):235–241. doi: 10.1080/19338244.2019.1616666
  50. Khanwalkar P, Dabir N. Visual ergonomics for changing work environments in the COVID-19 pandemic. Work. 2022;73(s1): S169–S176. doi: 10.3233/WOR-211130
  51. Zayed HAM, Saied SM, Younis EA, Atlam SA. Digital eye strain: prevalence and associated factors among information technology professionals, Egypt. Environ Sci Pollut Res Int. 2021;28(20): 25187–25195. doi: 10.1007/s11356-021-12454-3
  52. Sánchez-Brau M, Domenech-Amigot B, Brocal-Fernández F, et al. Prevalence of computer vision syndrome and its relationship with ergonomic and individual factors in presbyopic VDT workers using progressive addition lenses. Int J Environ Res Public Health. 2020;17(3):1003. doi: 10.3390/ijerph17031003
  53. Wajuihian SO. Correlations between clinical measures and symptoms: Report 1: Stereoacuity with accommodative, vergence measures, and symptoms. J Optom. 2020;7(13):171–184. doi: 10.1016/j.optom.2020.02.002
  54. Talens-Estarelles C, García-Marqués JV, Cerviño A, García-Lázaro S. Digital display use and contact lens wear: effects on dry eye signs and symptoms. Ophthalmic Physiol Opt. 2022;42(4): 797–806. doi: 10.1111/opo.12987
  55. Sheppard AL, Wolffsohn JS. Digital eye strain: prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018; 16(3):e000146. doi: 10.1136/bmjophth-2018-000146
  56. Ovechkin IG, Konovalov МE, Kovrigina EI, et al. Quality of life of a patient with computer vision syndrome depending on the type of accommodative astenopia. Russian Ophthalmological Journal. 2021; 14(4):74–78. (In Russ). doi: 10.21516/2072-0076-2021-14-4-74-78
  57. Mushkova IA, Mitronina ML, Kornyushina TA, et al. The results of two-stage optico-functional rehabilitation of patients with refractive disorders and the risk of postoperative asthenopic syndrome after FemtoLASIK. Russian Ophthalmological Journal. 2018;11(4):14–23. (In Russ). doi: 10.21516/2072-0076-2018-11-4-14-22
  58. Vorontsova TN. Results of medication therapy of habitually excessive tension of accommodation in children and higher-school students. Russian Ophthalmological Journal. 2016;9(2):18–21. (In Russ). doi: 10.21516/2072-0076-2016-9-2-18-21
  59. Ovechkin IG, Yudin VE, Gadzhiev IS, et al. Diagnostics and comprehensive recovery treatment of an astenic form of accommodative astenopia in an asteno-neurotic state of psychosomatic genesis. A clinical case. Russian Ophthalmological Journal. 2020;13(4):83–86. (In Russ). doi: 10.21516/2072-0076-2020-13-4-83-86
  60. Tarutta EP, Iomdina EN, Tarasova NA. Nehirurgicheskoe lechenie progressirujushhej blizorukosti. Russian Journal of Clinical Ophthalmology. 2016;16(4):204–210. (In Russ).
  61. Tarutta ЕP, Proskurina OV, Markossian GA, et al. A strategically oriented conception of optical prevention of myopia onset and progression. Russian Ophthalmological Journal. 2020;13(4):7–16. (In Russ). doi: 10.21516/2072-0076-2020-13-4-7-16
  62. Ovechkin IG, Gadzhiev IS, Kozhukhov AA, Belikova EI. Optical reflex treatment of myopia and asthenic form of accommodation asthenopia form the standpoint of the methods used, effectiveness and staging. Ophthalmology in Russia. 2020;17(3):422–428. (In Russ). doi: 10.18008/1816-5095-2020-3-422-428
  63. Ma MM, Scheiman M, Su C, Chen X. Effect of vision therapy on accommodation in myopic Chinese children. J Ophthalmol. 2016; 2016:1202469. doi: 10.1155/2016/1202469.
  64. Stokkermans TJ, Reitinger JC, Tye G, et al. Accommodative exercises to lower intraocular pressure. J Ophthalmol. 2020;2020: 6613066. doi: 10.1155/2020/6613066

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies