Virtual reality as a technology of multimodal correction of post-stroke motor and cognitive disturbances in conditions of multitasking functioning (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents an overview of innovative technologies based on the methods of sensorimotor retraining of patients using virtual reality technology as a promising in the comprehensive rehabilitation of patients who have suffered a cerebral stroke. High level of evidence studies (RCTs, meta-analyses, and systematic reviews) index in the PubMed, Cochrane Library, ClinicalTrials.gov databases are analyzed. Training with multisensory effects on visual, auditory, vestibular, and kinesthetic analyzers in multitasking conditions have beneficial effects on cognitive and motor training, retraining, neuropsychological status of the patien,t and an increase in the level of motivation to achieve success in the rehabilitation. The synergistic nature of the multimodal effects of virtual reality makes it possible to expand the possibilities and increase the effectiveness of medical rehabilitation in patients who have undergone cerebral stroke.

About the authors

Elena V. Kostenko

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine

Email: ekostenko58@mail.ru
ORCID iD: 0000-0003-0902-348X
SPIN-code: 1343-0947

Dr. Sci. (Med.), professor

Russian Federation, Moscow

Liudmila V. Petrova

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine; Pirogov Russian National Research Medical University (Pirogov Medical University)

Author for correspondence.
Email: ludmila.v.petrova@yandex.ru
ORCID iD: 0000-0003-0353-553X
SPIN-code: 9440-1425

Cand. Sci. (Med.), senior research associate

Russian Federation, Moscow

Irena V. Pogonchenkova

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine

Email: pogonchenkovaiv@zdrav.mos.ru
ORCID iD: 0000-0001-5123-5991
SPIN-code: 8861-7367

Dr. Sci. (Med.)

Russian Federation, Moscow

Vera D. Kopasheva

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine

Email: blackfoxyyy@gmail.com
ORCID iD: 0000-0003-2388-6011
Russian Federation, Moscow

References

  1. Piradov MA, Tanashjan MM, Maksimova MJu. Insul’t: sovremennye tehnologii diagnostiki i lechenija. 3-e izd. Moscow: MEDpress-inform; 2018. 360 p. (In Russ).
  2. Abubakar SA, Isezuo SA. Health related quality of life of stroke survivors: experience of a stroke unit. Int J Biomed Sci. 2012;8(3):183–187.
  3. Brainin M, Norrving B, Sunnerhagen KS, et al. Poststroke chronic disease management: towards improved identification and interventions for post-stroke spasticity-related complications. Int J Stroke. 2011;6(1):42–46. doi: 10.1111/j.1747-4949.2010.00539.x
  4. Mellon L, Brewer L, Hall P, et al. Cognitive impairment six months after ischaemic stroke: a profile from the ASPIRE-S study. BMC Neurol. 2015;15:31. doi: 10.1186/s12883-015-0288-2
  5. Fakhretdinov VV, Brynza NS, Kurmangulov AA. Modern approaches to rehabilitation of patients after stroke. Vestnik of the Smolensk State Medical Academy. 2019;18(2):182–189 (In Russ).
  6. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–754. doi: 10. 10.1016/S1474-4422(09)70150-4
  7. Winstein CJ, Wolf SL, Dromerick AW, et al. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. JAMA. 2016;315(6):571–581. doi: 10.1001/jama.2016.0276
  8. Kwakkel G, Winters C, Van Wegen EE, et al. Effects of unilateral upper-limb training in two distinct prognostic groups early after stroke: the EXPLICIT-stroke randomized clinical trial. Neurorehabil Neural Repair. 2016;30(9):804–816. doi: 10.1177/ 1545968315624784
  9. Yelnik AP, Quintaine V, Andriantsifanetra C, et al. AMOBES (active mobility very early after stroke): a randomized controlled trial. Stroke. 2017;48(2):400–405. doi: 10.1161/STROKEAHA.116.014803
  10. Pomeroy VM, Hunter SM, Johansen-Berg H, et al. Functional strength training versus movement performance therapy for upper-limb motor recovery early after stroke: a RCT. Southampton (UK): NIHR Journals Library; 2018. doi: 10.3310/eme05030
  11. Muresanu DF, Heiss W-D, Hoemberg V, et al. Cerebrolysin and recovery after stroke (CARS): a randomized, placebo-controlled, double-blind, multicenter trial. Stroke. 2016;47(1):151–159. doi: 10.1161/STROKEAHA.115.009416
  12. Cramer SC, Enney LA, Russell CK, et al. Proof-of-concept randomized trial of the monoclonal antibody GSK249320 versus placebo in stroke patients. Stroke. 2017;48(3):692–698. doi: 10.1161/STROKEAHA.116.014517
  13. Ford GA, Bhakta BB, Cozens A, et al. Safety and efficacy of co-careldopa as an add-on therapy to occupational and physical therapy in patients after stroke (DARS): a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2019;18(6):530–538. doi: 10.1016/S1474-4422(19)30147-4
  14. Bath PM, Scutt P, Love J, et al. Pharyngeal electrical stimulation for treatment of dysphagia in subacute stroke: a randomized controlled trial. Stroke. 2016;47(6):1562–1570. doi: 10.1161/STROKEAHA.115.012455
  15. Levy RM, Harvey RL, Kissela BM, et al. Epidural electrical stimulation for stroke rehabilitation: results of the prospective, multicenter, randomized, single-blinded everest trial. Neurorehabil Neural Repair. 2016;30(2):107–119. doi: 10.1177/1545968315575613
  16. Harvey RL, Edwards D, Dunning K, et al. Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke. Stroke. 2018;49(9):2138–2146. doi: 10.1161/STROKEAHA.117.020607
  17. Saposnik G, Cohen LG, Mamdani M, et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15(10):1019–1027. doi: 10.1016/S1474-4422(16)30121-1
  18. Brunner I, Skouen JS, Hofstad H, et al. Virtual reality training for upper-extremity in subacute stroke (VIRTUES): a multicenter RCT. Neurology. 2017;89(24):2413–2421. doi: 10.1212/WNL.0000000000004744
  19. Adie K, Schofield C, Berrow M, et al. Does the use of nintendo Wii SportsTM improve arm function? Trial of WiiTM in Stroke: a randomized controlled trial and economics analysis. Clin Rehabil. 2017;31(2):173–185. doi: 10.1177/0269215516637893
  20. Cramer SC, Dodakian L, Le V, et al. Efficacy of home-based telerehabilitation vs in-clinic therapy for adults after stroke: a rando mized clinical trial. JAMA Neurol. 2019;76(9):1079–1087. doi: 10.1001/jamaneurol.2019.1604
  21. Rodgers H, Bosomworth H, Krebs HI, et al. Robot assisted training for the upper-limb after stroke (RATULS): a multicentre randomised controlled trial. The Lancet. 2019;394(10192):51–62. doi: 10.1016/S0140-6736(19)31055-4
  22. Silver B. Virtual reality versus reality in post-stroke rehabilitation. Lancet Neurol. 2016;15(10):996–997. doi: 10.1016/S1474-4422(16)30126-0
  23. Schultheis MT, Rizzo AA. The application of virtual reality technology in rehabilitation. Rehabilitation Psychology. 2001;46(3):296. doi: 10.1037/0090-5550.46.3.296
  24. Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015;95(3):415–425. doi: 10.2522/ptj.20130579
  25. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–S239. doi: 10.1044/1092-4388(2008/018)
  26. Karpov OE, Daminov VD, Novak EV, et al. Virtual reality tech no logies in medical rehabilitation as an example of modern health informatization. Bulletin of Pirogov National Medical and Surgical Center. 2020;15(1):89–98. (In Russ). doi: 10.25881/BPNMSC.2020.71.14.017
  27. Lee HS, Lim JH, Jeon BH, Song CS. Non-immersive virtual reality rehabilitation applied to a task-oriented approach for stroke patients: a randomized controlled trial. Restor Neurol Neurosci. 2020;38(2):165–172. doi: 10.3233/RNN-190975
  28. Merians AS, Jack D, Boian R, et al. Virtual reality — augmented rehabilitation for patients following stroke. Phys Ther. 2002;82(9):898–915. doi: 10.1093/ptj/ 82.9.898
  29. Burke JW, McNeill M, Charles DK, et al. Optimising engagement for stroke rehabilitation using serious games. Vis Comput. 2009;25:1085–1099. doi: 10.1007/s00371-009-0387-4
  30. Mihelj M, Novak D, Milavec M, et al. Virtual rehabilitation environment using principles of intrinsic motivation and game design. Presence: Teleoperators and Virtual Environments. 2012;21(1):1–15. doi: 10.1162/PRES_a_00078
  31. Plummer P, Villalobos RM, Vayda MS, et al. Feasibility of dual-task gait training for community-dwelling adults after stroke: a case series. Stroke Res Treat. 2014;2014:538602. doi: 10.1155/2014/538602
  32. An HJ, Kim JI, Kim YR, et al. The effect of various dual task training methods with gait on the balance and gait of patients with chronic stroke. J Phys Ther Sci. 2014;26(8):1287–1291. doi: 10.1589/jpts.26.1287
  33. Her JG, Park KD, Yang Y, et al. Effects of balance training with various dual-task conditions on stroke patients. J Phys Ther Sci. 2011;23(5):713–717. doi: 10.1589/jpts.23.713
  34. Fishbein P, Hutzler Y, Ratmansky M, et al. A preliminary study of dual-task training using virtual reality: influence on walking and balance in chronic poststroke survivors. J Stroke Cerebrovasc Dis. 2019;28(11):104343. doi: 10.1016/j.jstrokecerebrovasdis.2019.104343
  35. Petrikov SS, Grechko AV, Shchelkunova IG, et al. New perspectives of motor rehabilitation of patients after focal brain lesions. Burdenko’s Journal of Neurosurgery. 2019;83(6):90–99. (In Russ, In Engl). doi: 10.17116/neiro20198306190
  36. Subramaniam S, Wan-Ying Hui-Chan Ch, Bhatt T, et al. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors. J Neurol Phys Ther. 2014;38(4):216–225. doi: 1097/NPT.0000000000000056
  37. Kannan L, Vora J, Bhatt T, Hughes SL. Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: a randomized controlled trial. NeuroRehabilitation. 2019;44(4):493–510. doi: 10.3233/NRE-182683
  38. Hatem SM, Saussez G, Della Faille M, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016;10:442. doi: 10.3389/fnhum.2016.00442
  39. Laver KE, Lange B, George S, et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11(11):CD008349. doi: 10.1002/14651858.CD008349.pub4
  40. Aminov A, Rogers JM, Middleton S, et al. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. J Neuroeng Rehabil. 2018;15(1):29. doi: 10.1186/s12984-018-0370-2
  41. Aramaki AL, Sampaio RF, Reis ACS, et al. Virtual reality in the rehabilitation of patients with stroke: an integrative review. Arq Neuropsiquiatr. 2019;77(4):268–278. doi: 10.1590/0004-282X20190025
  42. Shin JH, Kim MY, Lee JY, et al. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. J Neuroeng Rehabil. 2016;13:17. doi: 10.1186/s12984-016-0125-x
  43. Hee-Tae J, Hwan K, Jugyeong J, et al. Feasibility of using the RAPAEL Smart Glove in upper limb physical therapy for patients after stroke: a randomized controlled trial. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:3856–3859. doi: 10.1109/EMBC.2017.8037698
  44. Choi YH, Paik NJ. Mobile game-based virtual reality program for upper extremity stroke rehabilitation. J Vis Exp. 2018;(133):56241. doi: 10.3791/56241
  45. Lee HS, Lim JH, Jeon BH, Song CS. Non-immersive virtual reality rehabilitation applied to a task-oriented approach for stroke patients: a randomized controlled trial. Restor Neurol Neurosci. 2020;38(2):165–172. doi: 10.3233/RNN-190975
  46. Kang MG, Yun SJ, Lee SY, et al. Effects of upper-extremity rehabilitation using smart glove in patients with subacute stroke: results of a prematurely terminated multicenter randomized controlled trial. Front Neurol. 2020;11:580393. doi: 10.3389/fneur.2020.580393
  47. Park YS, An CS, Lim CG. Effects of a rehabilitation program using a wearable device on the upper limb function, performance of activities of daily living, and rehabilitation participation in patients with acute stroke. Int J Environ Res Public Health. 2021;18(11):5524. doi: 10.3390/ijerph18115524
  48. El-Kafy EMA, Alshehri MA, El-Fiky AA, Guermazi MA. The effect of virtual reality-based therapy on improving upper limb functions in individuals with stroke: a randomized control trial. Front Aging Neurosci. 2021;13:731343. doi: 10.3389/fnagi.2021.731343
  49. Chen J, Or CK, Chen T. Effectiveness of using virtual reality-supported exercise therapy for upper extremity motor rehabilitation in patients with stroke: systematic review and meta-analysis of randomized controlled trials. J Med Internet Res. 2022;24(6):e24111. doi: 10.2196/24111
  50. Lansberg MG, Legault C, MacLellan A, et al. Home-based virtual reality therapy for hand recovery after stroke. PM R. 2022;14(3):320–328. doi: 10.1002/pmrj.12598
  51. Jonsdottir J, Baglio F, Gindri P, et al. Virtual reality for motor and cognitive rehabilitation from clinic to home: a pilot feasibility and efficacy study for persons with chronic stroke. Front Neurol. 2021;12:601131. doi: 10.3389/fneur.2021.601131
  52. Domínguez-Téllez P, Moral-Muñoz JA, Salazar A, et al. Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: systematic review and meta-analysis. Games Health J. 2020;9(1):1–10. doi: 10.1089/g4h.2019.0043
  53. Zhang B, Li D, Liu Y, et al. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: a systematic review and meta-analysis. J Adv Nurs. 2021;77(8):3255–3273. doi: 10.1111/jan.14800
  54. Gao Y, Ma L, Lin C, et al. Effects of virtual reality-based intervention on cognition, motor function, mood, and activities of daily living in patients with chronic stroke: a systematic review and meta-analysis of randomized controlled trials. Front Aging Neurosci. 2021;13:766525. doi: 10.3389/fnagi.2021.766525
  55. Barcala L, Grecco LA, Colella F, et al. Visual biofeedback balance training using wii fit after stroke: a randomized controlled trial. J Phys Ther Sci. 2013;25(8):1027–1032. doi: 10.1589/jpts.25.1027
  56. Kayabinar B, Alemdaroğlu-Gürbüz İ, Yilmaz Ö. The effects of virtual reality augmented robot-assisted gait training on dual-task performance and functional measures in chronic stroke: a randomized controlled single-blind trial. Eur J Phys Rehabil Med. 2021;57(2):227–237. doi: 10.23736/S1973-9087.21.06441-8
  57. Chen L, Lo WL, Mao YR, et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. Biomed Res Int. 2016;2016:7309272. doi: 10.1155/2016/7309272
  58. Bruni MF, Melegari C, De Cola MC, et al. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis. J Clin Neurosci. 2018;48:11–17. doi: 10.1016/j.jocn.2017.10.048
  59. Bergmann J, Krewer C, Bauer P, et al. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial. Eur J Phys Rehabil Med. 2018;54(3):397–407. doi: 10.23736/S1973-9087.17.04735-9
  60. Wiley E, Khattab S, Tang A. Examining the effect of virtual rea lity therapy on cognition post-stroke: a systematic review and meta-analysis. Disabil Rehabil Assist Technol. 2022;17(1):50–60. doi: 10.1080/17483107.2020.1755376
  61. Bernhardt J, Borschmann KN, Kwakkel G, et al. Setting the scene for the second stroke recovery and rehabilitation roundtable. Int J Stroke. 2019;14(5):450–456. doi: 10.1177/1747493019851287
  62. Maggio MG, Latella D, Maresca G, et al. Virtual reality and cognitive rehabilitation in people with stroke: an overview. J Neurosci Nurs. 2019;51(2):101–105. doi: 10.1097/JNN.0000000000000423

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Kostenko E.V., Petrova L.V., Pogonchenkova I.V., Kopasheva V.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies