Fibroblast growth factor 21 as a new tool in the multicomponent assessment of cardiovascular diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Currently, the search and study of new biological markers that can assist in the early diagnosis of cardiovascular diseases, serving as a laboratory tool for assessing the efficiency of ongoing therapy and being a prognostic criterion of possible clinical outcomes and a significant indicator in risk stratification, remain relevant. Two decades have passed since fibroblast growth factor 21 (FGF21), the 21st member of the FGF family, was identified and cloned. FGF21 is a secreted protein that acts as a metabolic regulator and participates in glucose homeostasis, ketogenesis, and regulation of insulin sensitivity. FGF21 expression is controlled by PPAR alpha receptor, which activates peroxisome proliferation. The liver is the main site of FGF21 production. Extrahepatic tissues such as white adipose tissue, brown adipose tissue, and skeletal muscle also express FGF21. Human FGF21 contains 209 amino acids, whereas the mouse counterpart has 210. Mouse and human FGF21 have 75% homology. Endocrine actions of FGF21 include enhancing glucose uptake by adipocytes of white adipose tissue via a unidirectional glucose transporter protein and activating the thermogenic function of brown adipose tissue. Furthermore, FGF21 has autocrine/paracrine effects, such as the induction of hepatic ketogenesis. FGF21 affects target cells with the participation of FGFR1 and FGFR4 receptors and beta-Klotho, a single-pass transmembrane protein that functions as an obligate cofactor of FGF21 signaling. Animal studies have clearly demonstrated that FGF21 acts directly on cardiac tissue, preventing the development of cardiac hypertrophy and reducing post-infarction damage and diabetic cardiomyopathy. Accumulating data emphasize the value of FGF21 as a new biological marker for diagnosis and prognosis assessment in patients with cardiac issues. Moreover, the role of FGF21 in heart diseases is very interesting because of its cardioprotective effects. Future large-scale prospective studies are necessary to confirm of the diagnostic, predictive, and possibly therapeutic role of this marker.

About the authors

Amina M. Alieva

Pirogov Russian National Research Medical University

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Med.), assistant professor

Russian Federation, Moscow

Irina E. Baikova

Pirogov Russian National Research Medical University

Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-code: 3054-8884

MD, Cand. Sci. (Med.), assistant professor

Russian Federation, Moscow

Elena V. Reznik

Pirogov Russian National Research Medical University

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-code: 3494-9080
ResearcherId: N-6856-2016

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Ramiz K. Valiev

Loginov Moscow Clinical Scientific and Practical Center

Email: radiosurgery@bk.ru
ORCID iD: 0000-0003-1613-3716
SPIN-code: 2855-2867

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Islam Z. Akhmatov

Razumovsky Saratov State Medical University of the Ministry of Health of Russia

Email: ballard@internet.ru
Russian Federation, Saratov

Roza A. Arakelyan

Pirogov Russian National Research Medical University

Email: Elmira.sharm@yandex.ru
ORCID iD: 0000-0002-2500-197X
Russian Federation, Moscow

Mukhammetsakhet N. Saryev

Loginov Moscow Clinical Scientific and Practical Center

Email: mishamoff@gmail.com
ORCID iD: 0000-0003-1794-9258
Russian Federation, Moscow

Igor G. Nikitin

Pirogov Russian National Research Medical University

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881

MD, Dr. Sci. (Med.), professor

Russian Federation, Moscow

References

  1. Lin W, Zhang T, Zhou Y, et al. Advances in Biological Functions and Clinical Studies of FGF21. Diabetes Metab Syndr Obes. 2021;14:3281-3290. doi: 10.2147/dmso.s317096
  2. Badman MK, Pissios P, Kennedy AR, et al. Hepatic Fibroblast Growth Factor 21 Is Regulated by PPARα and Is a Key Mediator of Hepatic Lipid Metabolism in Ketotic States. Cell Metab. 2007;5(6):426-437. doi: 10.1016/j.cmet.2007.05.002
  3. Planavila A, Redondo-Angulo I, Villarroya F. FGF21 and Cardiac Physiopathology. Front Endocrinol (Lausanne). 2015;6. doi: 10.3389/fendo.2015.00133
  4. Kokkinos J, Tang S, Rye K-A, Ong KL. The role of fibroblast growth factor 21 in atherosclerosis. Atherosclerosis. 2017;257:259–265. doi: 10.1016/j.atherosclerosis.2016.11.033
  5. Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654–667. doi: 10.1038/s41574-020-0386-0
  6. Planavila A, Redondo I, Hondares E, et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun. 2013;4(1). doi: 10.1038/ncomms3019
  7. Planavila A, Redondo-Angulo I, Ribas F, et al. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc Res. 2015;106(1):19–31. doi: 10.1093/cvr/cvu263
  8. Liu SQ, Roberts D, Kharitonenkov A, et al. Endocrine Protection of Ischemic Myocardium by FGF21 from the Liver and Adipose Tissue. Sci Rep. 2013;3(1). doi: 10.1038/srep02767
  9. Joki Y, Ohashi K, Yuasa D, et al. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochem Biophys Res Commun. 2015;459(1):124–130. doi: 10.1016/j.bbrc.2015.02.081
  10. Aubert G, Vega RB, Kelly DP. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. Biochim Biophys Acta. 2013;1833(4):840–847. doi: 10.1016/j.bbamcr.2012.08.015
  11. Lehman JJ, Kelly DP. Transcriptional Activation Of Energy Metabolic Switches In The Developing And Hypertrophied Heart. Clin Exp Pharmacol Physiol. 2002;29(4):339-345. doi: 10.1046/j.1440-1681.2002.03655.x
  12. Schilling J, Lai L, Sambandam N, et al. Toll-Like Receptor-Mediated Inflammatory Signaling Reprograms Cardiac Energy Metabolism by Repressing Peroxisome Proliferator-Activated Receptor γ Coactivator-1 Signaling. Circu Heart Fail. 2011;4(4):474–482. doi: 10.1161/circheartfailure.110.959833
  13. Álvarez-Guardia D, Palomer X, Coll T, et al. The p65 subunit of NF-κB binds to PGC-1α, linking inflammation and metabolic disturbances in cardiac cells. Cardiovasc Res. 2010;87(3):449–458. doi: 10.1093/cvr/cvq080
  14. Stachowiak EK, Fang X, Myers J, et al. cAMP-induced differentiation of human neuronal progenitor cells is mediated by nuclear fibroblast growth factor receptor-1 (FGFR1). J Neurochem. 2003;84(6):1296–1312. doi: 10.1046/j.1471-4159.2003.01624.x
  15. Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1 Cardiovasc Res. 2008;79(2):208–217. doi: 10.1093/cvr/cvn098
  16. Eisele PS, Salatino S, Sobek J, et al. The Peroxisome Proliferator-activated Receptor γ Coactivator 1α/β (PGC-1) Coactivators Repress the Transcriptional Activity of NF-κB in Skeletal Muscle Cells. J Biol Chem. 2013;288(4):2246–2260. doi: 10.1074/jbc.M112.375253
  17. Brahma MK, Adam RC, Pollak NM, et al. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. J Lipid Res. 2014;55(11):2229–2241. doi: 10.1194/jlr.M044784
  18. Gaich G, Chien Jenny Y, Fu H, et al. The Effects of LY2405319, an FGF21 Analog, in Obese Human Subjects with Type 2 Diabetes. Cell Metab. 2013;18(3):333–340. doi: 10.1016/j.cmet.2013.08.005
  19. Keipert S, Lutter D, Schroeder BO, et al. Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice. Nat Commun. 2020;11(1). doi: 10.1038/s41467-019-14069-2
  20. Villarroya J, Flachs P, Redondo-Angulo I, et al. Fibroblast Growth Factor-21 and the Beneficial Effects of Long-Chain n-3 Polyunsaturated Fatty Acids. Lipids. 2014;49(11):1081–1089. doi: 10.1007/s11745-014-3948-x
  21. Gallego-Escuredo JM, Gómez-Ambrosi J, Catalan V, et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes (Lond). 2014;39(1):121–129. doi: 10.1038/ijo.2014.76
  22. Villarroya F, Caelles C, Giralt M, et al. TNF-α Represses β-Klotho Expression and Impairs FGF21 Action in Adipose Cells: Involvement of JNK1 in the FGF21 Pathway. Endocrinology. 2012;153(9):4238–4245. doi: 10.1210/en.2012-1193
  23. Hirsch E, Patel V, Adya R, et al. Novel Insights into the Cardio-Protective Effects of FGF21 in Lean and Obese Rat Hearts. PLoS One. 2014;9(2). doi: 10.1371/journal.pone.0087102
  24. Yan X, Chen J, Zhang C, et al. FGF 21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J Cell Mol Med. 2015;19(7):1557–1568. doi: 10.1111/jcmm.12530
  25. Zhang C, Huang Z, Gu J, et al. Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway. Diabetologia. 2015;58(8):1937–1948. doi: 10.1007/s00125-015-3630-8
  26. Liu SQ. Liver cell-mediated alleviation of acute ischemic myocardial injury. Front Biosci. 2010;E2(2):711–724. doi: 10.2741/e131
  27. Liu SQ, Tefft BJ, Roberts DT, et al. Cardioprotective proteins upregulated in the liver in response to experimental myocardial ischemia. Am J Physiol Heart Circ Physiol. 2012;303(12):H1446–H1458. doi: 10.1152/ajpheart.00362.2012
  28. Kim KH, Jeong YT, Oh H, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med. 2012;19(1):83–92. doi: 10.1038/nm.3014
  29. Ribas F, Villarroya J, Hondares E, et al. FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J. 2014;463(2):191–199. doi: 10.1042/bj20140403
  30. Hojman P, Pedersen M, Nielsen AR, et al. Fibroblast Growth Factor-21 Is Induced in Human Skeletal Muscles by Hyperinsulinemia. Diabetes. 2009;58(12):2797–2801. doi: 10.2337/db09-0713
  31. Tyynismaa H, Carroll CJ, Raimundo N, et al. Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet. 2010;19(20):3948–3958. doi: 10.1093/hmg/ddq310
  32. Suomalainen A, Elo JM, Pietiläinen KH, et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011;10(9):806–818. doi: 10.1016/s1474-4422(11)70155-7
  33. Dogan Sukru A, Pujol C, Maiti P, et al. Tissue-Specific Loss of DARS2 Activates Stress Responses Independently of Respiratory Chain Deficiency in the Heart. Cell Metab. 2014;19(3):458–469. doi: 10.1016/j.cmet.2014.02.004
  34. Di Lisa F, Itoh N. Cardiac Fgf21 synthesis and release: an autocrine loop for boosting up antioxidant defenses in failing hearts. Cardiovasc Res. 2015;106(1):1–3. doi: 10.1093/cvr/cvv050
  35. Redondo-Angulo I, Mas-Stachurska A, Sitges M, et al. Fgf21 is required for cardiac remodeling in pregnancy. Cardiovasc Res. 2017;113(13):1574–1584. doi: 10.1093/cvr/cvx088
  36. Cui Y, Giesy SL, Hassan M, et al. Hepatic FGF21 production is increased in late pregnancy in the mouse. Am J Physiol Regul Integr Comp Physiol. 2014;307(3):R290–R298. doi: 10.1152/ajpregu.00554.2013
  37. Redondo-Angulo I, Planavila A, Giralt M, Villarroya F. Involvement of fibroblast growth factor-21 in gestation-induced cardiac hypertrophy. Eur Heart J. 2014;35(suppl 1):513–850. doi: 10.1093/eurheartj/ehu324
  38. Li J, Li Y, Liu Y, et al. Fibroblast Growth Factor 21 Ameliorates NaV1.5 and Kir2.1 Channel Dysregulation in Human AC16 Cardiomyocytes. Front Pharmacol. 2021;12. doi: 10.3389/fphar.2021.715466
  39. Liu C, Schönke M, Zhou E, et al. Pharmacological treatment with FGF21 strongly improves plasma cholesterol metabolism to reduce atherosclerosis. Cardiovasc Res. 2022;118(2):489-502. doi: 10.1093/cvr/cvab076
  40. Li J, Gong L, Zhang R, et al. Fibroblast growth factor 21 inhibited inflammation and fibrosis after myocardial infarction via EGR1. Eur J Pharmacol. 2021;910. doi: 10.1016/j.ejphar.2021.174470
  41. Chen M, Zhong J, Wang Z, et al. Fibroblast Growth Factor 21 Protects Against Atrial Remodeling via Reducing Oxidative Stress. Fronti Cardiovasc Med. 2021;8. doi: 10.3389/fcvm.2021.720581
  42. Aleem M, Maqsood H, Younus S, et al. Fibroblast Growth Factor 21 and Its Association With Oxidative Stress and Lipid Profile in Type 2 Diabetes Mellitus. Cureus. 2021.13(9):e17723. doi: 10.7759/cureus.17723
  43. Lin W, Zhang T, Zhou Y, et al. Advances in Biological Functions and Clinical Studies of FGF21. Diabetes Metab Syndr Obes. 2021;14:3281–3290. doi: 10.2147/dmso.s317096
  44. Balboa-Vásquez J, Domínguez-Reyes A, Escandón-San Martín Y, et al. Relación del factor de crecimiento de fibroblastos 21 con indicadores de masa y función muscular en personas mayores con sobrepeso u obesidad. Estudio exploratorio. Rev Esp Geriatr Gerontol. 2021;56(2):81–86. doi: 10.1016/j.regg.2020.11.004
  45. Ren F, Huang J, Dai T, Gan F. Retrospective analysis of factors associated with serum levels of fibroblast growth factor-21 in patients with diabetes. Ann Palliat Med. 2021;10(3):3258–3266. doi: 10.21037/apm-21-525
  46. Durnwald C, Mele L, Landon MB, et al. Fibroblast Growth Factor 21 and Metabolic Dysfunction in Women with a Prior Glucose-Intolerant Pregnancy. Am J Perinatol. 2020;38(13):1380–1385. doi: 10.1055/s-0040-1712966
  47. Huang S-Y, Wu D-A, Tsai J-P, Hsu B-G. Serum Levels of Fibroblast Growth Factor 21 Are Positively Associated with Aortic Stiffness in Patients with Type 2 Diabetes Mellitus. Int J Environ Res Public Health. 2021;18(7). doi: 10.3390/ijerph18073434
  48. Huang Z, Xu A, Cheung BMY. The Potential Role of Fibroblast Growth Factor 21 in Lipid Metabolism and Hypertension. Current Hypertension Reports. 2017;19(4). doi: 10.1007/s11906-017-0730-5
  49. Zhang Y, Yan J, Yang N, et al. High-Level Serum Fibroblast Growth Factor 21 Concentration Is Closely Associated With an Increased Risk of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Front Cardiovasc Med. 2021;8. doi: 10.3389/fcvm.2021.705273
  50. Ong K-L, Januszewski AS, O’Connell R, et al. The relationship of fibroblast growth factor 21 with cardiovascular outcome events in the Fenofibrate Intervention and Event Lowering in Diabetes study. Diabetologia. 2014;58(3):464–473. doi: 10.1007/s00125-014-3458-7
  51. Gan F, Huang J, Dai T, et al. Serum level of fibroblast growth factor 21 predicts long-term prognosis in patients with both diabetes mellitus and coronary artery calcification. Ann Palliat Med. 2020;9(2):368–374. doi: 10.21037/apm.2020.03.28
  52. Haberka M, Machnik G, Kowalówka A, et al. Epicardial, paracardial and perivascular fat quantity, genes expression and serum cytokines in coronary artery disease and diabetes. Pol Arch Intern Med. 2019. doi: 10.20452/pamw.14961
  53. Gu L, Jiang W, Zheng R, et al. Fibroblast Growth Factor 21 Correlates with the Prognosis of Dilated Cardiomyopathy. Cardiology. 2021;146(1):27–33. doi: 10.1159/000509239
  54. Ianoș RD, Pop C, Iancu M, et al. Diagnostic Performance of Serum Biomarkers Fibroblast Growth Factor 21, Galectin-3 and Copeptin for Heart Failure with Preserved Ejection Fraction in a Sample of Patients with Type 2 Diabetes Mellitus. Diagnostics. 2021;11(9). doi: 10.3390/diagnostics11091577
  55. Chou R-H, Huang P-H, Hsu C-Y, et al. Circulating Fibroblast Growth Factor 21 is Associated with Diastolic Dysfunction in Heart Failure Patients with Preserved Ejection Fraction. Sci Rep. 2016;6(1). doi: 10.1038/srep33953
  56. Chen H, Lu N, Zheng M. A high circulating FGF21 level as a prognostic marker in patients with acute myocardial infarction. Am J Transl Res. 2018;10(9):2958-2966
  57. Gu L, Jiang W, Qian H, et al. Elevated serum FGF21 predicts the major adverse cardiovascular events in STEMI patients after emergency percutaneous coronary intervention. PeerJ. 2021;9. doi: 10.7717/peerj.12235
  58. Xu A, Zhang W, Chu S, et al. Serum Level of Fibroblast Growth Factor 21 Is Independently Associated with Acute Myocardial Infarction. PloS One. 2015;10(6). doi: 10.1371/journal.pone.0129791
  59. Han X, Chen C, Cheng G, et al. Serum fibroblast growth factor 21 levels are increased in atrial fibrillation patients. Cytokine. 2015;73(1):176–180. doi: 10.1016/j.cyto.2015.02.019
  60. Basurto L, Gregory MA, Hernández SB, et al. Monocyte chemoattractant protein-1 (MCP-1) and fibroblast growth factor-21 (FGF-21) as biomarkers of subclinical atherosclerosis in women. Exp Gerontol. 2019;124. doi: 10.1016/j.exger.2019.05.013
  61. Proshai GA, Dudarenko SV, Partsernyak AS, et al. Fibroblast growth factor 21 from the perspective of a promising marker of metabolic disorders and premature aging in polymorbid cardiovascular pathology in young and middle-aged people. Emergency cardiology and cardiovascular risks. 2020;4(2):1002–1005. (In Russ).
  62. Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical Value of Blood Biomarkers in Patients with Chronic Heart Failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. doi: 10.20514/2226-6704-2018-8-5-333-345

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Intracellular mechanisms involved in the control of FGF21 production and its effects on the heart [3].1, cardiac pathology; 2, blood flow; 3, stress; 4, fatty acid metabolism; 5, apoptosis; 6, reactive oxygen species.

Download (42KB)
3. Fig. 2. Main properties of FGF21.1, heart; 2, liver; 3, myocardial infarction; 4, oxidative stress; 5, endoplasmic reticulum stress; 6, diabetic cardiomyopathy; 7, mitochondrial dysfunction; 8, myocardial ischemia; 9, white adipose tissue; 10, brown adipose tissue; 11, proinflammatory stimuli; 12, hypertrophic stimuli; 13, blood flow; 14, endocrine activity; 15, auto/paracrine activity.

Download (24KB)

Copyright (c) 2022 Alieva A.M., Baikova I.E., Reznik E.V., Valiev R.K., Akhmatov I.Z., Arakelyan R.A., Saryev M.N., Nikitin I.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies