Features of Software Implementation of Low-Frequency Deconvolution Algorithms


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The low-frequency deconvolution method makes it possible to convert digital records of electrodynamic seismometers to records of virtual sensors of a similar type, but with a lower natural frequency. The procedure requires only knowledge of the sensor parameters, which can be found from its technical description or obtained by calibration. Deconvolution in the time domain requires attention in choosing a numerical integration method, since use of the simplest methods leads to signal distortion. This is especially noticeable when the sampling rate of the original record is close to a geophone’s natural frequency. A universal approach is presented: realization of a low-frequency deconvolution algorithm in the frequency domain. Testing has shown good accuracy both in synthetic tests and for real seismological records, which were used to demonstrate reconstruction of the low-frequency component of a seismic geophone signal. The results are mainly relevant for problems that use a low sampling rate of recording, and they place high demands on the metrological characteristics of the recording equipment (e.g., local and regional seismicity monitoring).

Об авторах

P. Dergach

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences

Автор, ответственный за переписку.
Email: DergachPA@ipgg.sbras.ru
Россия, Novosibirsk, 630090

Ts. Tubanov

Geological Institute, Siberian Branch of the Russian Academy of Sciences

Email: DergachPA@ipgg.sbras.ru
Россия, Ulan-Ude, 670047

V. Yushin

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences

Email: DergachPA@ipgg.sbras.ru
Россия, Novosibirsk, 630090

A. Duchkov

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University

Email: DergachPA@ipgg.sbras.ru
Россия, Novosibirsk, 630090; Novosibirsk, 630073

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).