Method of Verification of Hypothesis about Mean Value on a Basis of Expansion in a Space with Generating Element


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this paper it is proposed an original method for verification of statistical hypotheses about mean values of random quantities. This method is based on Kunchenko stochastic polynomials tool and probabilistic description on a basis of higher order statistics (moments and/or cumulants). There are represented analytical expressions allowing to optimize decision rules using certain qualitive criterion and calculate decision-making error. It is shown polynomial decision rule in case of polynomial power S = 1 corresponds to classic linear decision rule which is used for comparative analysis. By means of multiple statistical experiments (Monte–Carlo method) obtained results of Neumann–Pierson criterion show proposed polynomial decision rules are characterized by increased accuracy (decrease of the 2nd genus errors probability) in compare to linear processing. The method efficiency increases with increase of stochastic polynomial order increase of degree of random quantities distribution difference from Gaussian probabilities distribution law.

Об авторах

Serhii Zabolotnii

Cherkasy State Technological University

Автор, ответственный за переписку.
Email: zabolotni@ukr.net
Украина, Cherkasy

S. Martynenko

Cherkasy State Technological University

Email: zabolotni@ukr.net
Украина, Cherkasy

S. Salypa

Cherkasy State Technological University

Email: zabolotni@ukr.net
Украина, Cherkasy

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).