FAST AND HIGH-ACCURACY HOUGH TRANSFORM WITH COMPUTATIONAL COMPLEXITY Θ(wh log3 w) FOR PROCESSING RECTANGULAR-SHAPED IMAGES OF ARBITRARY SIZES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Hough transform (HT) is a key tool in digital image processing, used in a wide range of scientific tasks, from document recognition to computed tomography. Algorithmic implementations of HT are traditionally evaluated based on two parameters: computational complexity and accuracy, which is defined as the error of approximating continuous lines with discrete ones formed during the execution of the algorithm. Fast HT algorithms (FHT) with optimal linear-logarithmic computational complexity are well studied; an example is the classic Brady-Yong algorithm, which is applicable exclusively to images with linear dimensions equal to powers of two. Its generalizations, such as the FHT2DT algorithm, allow rectangular images of arbitrary size to be processed, but the accuracy of the HT implemented by them is low, and it decreases as the size of the processed image increases. There are also HT algorithms that maintain a constant upper bound of the approximation error for images of any size. They provide higher accuracy, but their computational complexity approaches near-cubic, which makes them unsuitable for processing large images. This paper proposes the FHT2SP algorithm, which combines near-optimal speed with high accuracy. The algorithm has computational complexity of Θ(wh log3 w) when processing images of size w × h. At the same time, the proposed algorithm guarantees an orthotropic approximation error of continuous lines no greater than λ + 1/2 regardless of the image size, tunable by the control meta-parameter λ ∈ (0; 1]. The paper presents a summary table of experimental results, which can serve as a practical guide for selecting the value of the meta-parameter λ in order to balance accuracy and computational complexity.

About the authors

D. D Kazimirov

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences; Lomonosov Moscow State University; Smart Engines Service LLC

Email: d.kazimirov@smartengines.com
Moscow, Russia; Moscow, Russia; Moscow, Russia

D. P Nikolaev

Smart Engines Service LLC; Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Email: d.p.nikolaev@smartengines.com
Moscow, Russia; Moscow, Russia

References

  1. Hough P.V.C. Machine Analysis of Bubble Chamber Pictures // Proc. 2nd Int. Conf. on High-Energy Accelerators and Instrumentation (HEACC 1959). CERN, Geneva, Switzerland. Sept. 14–19, 1959. P. 554–558.
  2. Rahmdel P.S., Comley R., Shi D., McElduff S. A Review of Hough Transform and Line Segment Detection Approaches // Proc. 10th Int. Conf. on Computer Vision Theory and Applications (VISAPP 2015). Berlin, Germany. Mar. 11–14, 2015. V. 2. P. 411–418. https://doi.org/10.5220/0005268904110418
  3. Hassanein A.S., Mohammad S., Sameer M., Ragab M.E. A Survey on Hough Transform, Theory, Techniques and Applications, https://arxiv.org/abs/1502.02160 [cs.CV], 2015.
  4. Mukhopadhyay P., Chaudhuri B.B. A Survey of Hough Transform // Pattern Recognit. 2015. V. 48. № 3. P. 993–1010. https://doi.org/10.1016/j.patcog.2014.08.027
  5. Алиев М.А., Николаев Д.П., Сараев А.А. Построение быстрых вычислительных схем настройки алгоритма бинаризации Ниблэка // Тр. ИСА РАН. 2014. Т. 64. №3. С. 25–34.
  6. Saha S., Basu S., Nasipuri M., Basu D. A Hough Transform Based Technique for Text Segmentation // J. Comput. 2010. V. 2. № 2. P. 134–141.
  7. Ershova D., Gayer A., Sheshkus A., Arlazarov V.V. An Ultra-lightweight Approach for Machine Readable Zone Detection via Semantic Segmentation and Fast Hough Transform // Document Analysis and Recognition – ICDAR 2024 (Proc. 18th Int. Conf. Athens, Greece. Aug 30 – Sept. 4, 2024. Part IV). Lect. Notes Comput. Sci. V. 14807. Cham: Springer, 2024. P. 359–374. https://doi.org/10.1007/978-3-031-70546-5_21
  8. Безматерных П.В. Нормализация изображения текста с помощью быстрого преобразования Хафа // ИТиВС. 2024. № 4. С. 3–16. https://doi.org/10.14357/20718632240401
  9. Li H., Ma Y., Bao H., Zhang Y. Probabilistic Hough Transform for Rectifying Industrial Nameplate Images: A Novel Strategy for Improved Text Detection and Precision in Difficult Environments // Appl. Sci. 2023. V. 13. № 7. P. 4533 (16 pp.). https://doi.org/10.3390/app13074533
  10. Polevoy D., Gilmanov M., Kazimirov D., Chukalina M., Ingacheva A., Kulagin P., Nikolaev D. Tomographic Reconstruction: General Approach to Fast Back-Projection Algorithms // Mathematics. 2023. V. 11. №23. P. 4759 (37 pp.). https://doi.org/10.3390/math11234759
  11. Polevoy D.V., Kazimirov D.D., Chukalina M.V., Nikolaev D.P. Complexity-Preserving Transposition of Summing Algorithms: A Data Flow Graph Approach // Probl. Inf. Transm. 2024. V. 60. № 4. P. 344–362. https://doi.org/10.1134/S0032946024040057
  12. Polevoy D., Kazimirov D., Gilmanov M., Nikolaev D. No Reproducibility, No Progress: Rethinking CT Benchmarking // J. Imaging. 2025. V. 11. № 10. P. 344 (36 pp.). https://doi.org/10.3390/jimaging11100344
  13. Sheshkus A.V., Chirvonaya A.N., Matveev D.M., Nikolaev D.P., Arlazarov V.L. Vanishing Point Detection with Direct and Transposed Fast Hough Transform Inside the Neural Network // Компьютерная оптика. 2020. Т. 44. № 5. С. 737–745. https://doi.org/10.18287/2412-6179-CO-676
  14. Zhao K., Han Q., Zhang C.-B., Xu J., Cheng M.-M. Deep Hough Transform for Semantic Line Detection // IEEE Trans. Pattern Anal. Mach. Intell. 2021. V. 44. № 9. P. 4793–4806. https://doi.org/10.1109/TPAMI.2021.3077129
  15. Brady M.L., Yong W. Fast Parallel Discrete Approximation Algorithms for the Radon Transform // Proc. 4th Annu. ACM Symp. on Parallel Algorithms and Architectures (SPAA’92). San Diego, California, USA. June 29 – July 1, 1992. P. 91–99. https://doi.org/10.1145/140901.140911
  16. Kazimirov D.D., Rybakova E.O., Gulevskiy V.V., Terekhin A.P., Limonova E.E., Nikolaev D.P. Generalizing the Brady–Yong Algorithm: Efficient Fast Hough Transform for Arbitrary Image Sizes // IEEE Access. 2025. V. 13. P. 20101–20132. https://doi.org/10.1109/ACCESS.2025.3534405
  17. Khanipov T. Computational Complexity Lower Bounds of Certain Discrete Radon Transform Approximations, https://arxiv.org/abs/1801.01054 [cs.CC], 2018.
  18. Карпенко С.М., Ершов Е.И. Исследование свойств диадического паттерна быстрого преобразования Хафа // Пробл. передачи информ. 2021. Т. 57. № 3. С. 102–111. https://doi.org/10.31857/S0555292321030074
  19. Smirnov G., Karpenko S. Analyzing Deviations of Dyadic Lines in Fast Hough Transform, https://arxiv.org/abs/2311.10064 [cs.CV], 2023.
  20. Nikolaev D., Ershov E., Kroshnin A., Limonova E., Mukovozov A., Faradzhev I. On a Fast Hough/Radon Transform as a Compact Summation Scheme over Digital Straight Line Segments // Mathematics. 2023. V. 15. № 15. P. 3336 (22 pp.). https://doi.org/10.3390/math11153336
  21. Khanipov T.M. Ensemble Computation Approach to the Hough Transform, https://arxiv.org/abs/1802.06619 [cs.CC], 2018.
  22. G´omez-C´ardenes ´O., Marichal-Hern´andez J.G., Phillip L¨uke J., Rodr´ıguez-Ramos, J.M. Central and Periodic Multi-Scale Discrete Radon Transforms // Appl. Sci. 2021. V. 11. № 22. P. 10606 (27 pp.). https://doi.org/10.3390/app112210606
  23. Rosenfeld A. Digital Straight Line Segments // IEEE Trans. Comput. 1974. V. 23. № 12. P. 1264–1269. https://doi.org/10.1109/T-C.1974.223845
  24. Brady M.L. A Fast Discrete Approximation Algorithm for the Radon Transform // SIAM J. Comput. 1998. V. 27. № 1. P. 107–119. https://doi.org/10.1137/S0097539793256673
  25. Kazimirov D., Nikolaev D., Rybakova E., Terekhin A. Generalization of Brady–Yong Algorithm for Fast Hough Transform to Arbitrary Image Size // Proc. 5th Symp. on Pattern Recognition and Applications (SPRA 2024). Istanbul, Turkey. Nov. 11–13, 2024. Proc. SPIE. V. 13540. P. 67–72.
  26. Kazimirov D.D., Nikolaev D.P. Fast Hough Transform with Linear-Log-Cubed Computational Complexity for High-Accuracy Processing of Arbitrary-Shaped Images // Probl. Inf. Transm. 2025. V. 61. № 3 (to appear).
  27. Kazimirov D.D., Nikolaev D.P., Rybakova E.O., Terekhin A.P. Efficient In-Place Hough Transform Algorithm for Arbitrary Image Sizes // Probl. Inf. Transm. 2024. V. 60. № 4. P. 363–391. https://doi.org/10.1134/S0032946024040069
  28. Shepp L.A., Logan B.F. The Fourier Reconstruction of a Head Section // IEEE Trans. Nucl. Sci. 1974. V. 21. № 3. P. 21–43. https://doi.org/10.1109/TNS.1974.6499235
  29. IITP Vision Lab., adrt: Approximate Discrete Radon Transform, GitHub repository https://github.com/iitpvisionlab/adrt; Python Package Index (PyPI) https://pypi.org/project/adrtlib. Accessed 2025-05-09.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).