MATHEMATICAL MODELING OF THE PREEMPTION MECHANISM IN Wi-Fi NETWORKS WITH MULTIPLE STATIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

When developing a new amendment to the IEEE 802.11bn (Wi-Fi 8) standard, a preemption mechanism for channel access was proposed. This mechanism allows a station to interrupt a lower-priority transmission from an access point and gain access to the channel when a higher-priority data frame arrives. The preemption mechanism potentially guarantees low latency for real-time applications (RTAs), and the task of configuring the parameters of this mechanism is currently relevant. We develop an analytical model of a Wi-Fi 8 network with several stations generating priority traffic and an access point transmitting non-priority data streams. The model allows us to find the dependence of the quantile of priority traffic delay and access point throughput on the parameters of the preemption mechanism.

About the authors

A. V Riterman

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences; Moscow Independent Research Institute of Artificial Intelligence

Email: riterman@wnlab.ru
Moscow, Russia; Moscow, Russia

D. V Bankov

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences; Moscow Independent Research Institute of Artificial Intelligence

Email: bankov@iitp.ru
Moscow, Russia; Moscow, Russia

A. I Lyakhov

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences

Email: lyakhov@iitp.ru
Moscow, Russia

References

  1. Карамышев А.Ю., Порай Е.Д., Хоров Е.М. Оценка емкости системы сверхнадежной связи с низкими задержками с помощью аппроксимаций для многосерверных систем массового обслуживания G/G/s // Пробл. передачи информ. 2024. Т. 60. № 2. C. 36–52. https://doi.org/10.31857/S0555292324020049
  2. Fang J., Akhmetov D., Park M., Cariou L., Stacey R. Preemption for Low Latency Application. IEEE 802.11-23/0092r0. Mar. 13, 2023. https://mentor.ieee.org/802.11/dcn/23/11-23-0092-00-0uhr-preemption.pptx.
  3. Ruy K., Chu L., Wang H., Cao R., Zhang H. Low Latency Support in UHR. IEEE 802.11-23/0018r1. Feb. 5, 2023. https://mentor.ieee.org/802.11/dcn/23/11-23-0018-01-0uhr-low-latency-support-in-uhr.pptx.
  4. Karamyshev A., Levitsky I., Bankov D., Khorov E. A Tutorial on Wi-Fi 8: The Journey to Ultra High Reliability // Probl. Inf. Transm. 2025. V. 61. № 2. P. 164–210. https://doi.org/10.1134/S003294602502005X
  5. Galati-Giordano L., Geraci G., Carrascosa M., Bellalta B. What Will Wi-Fi 8 Be? A Primer on IEEE 802.11bn Ultra High Reliability // IEEE Commun. Mag. 2024. V. 62. № 8. P. 126–132. https://doi.org/10.1109/MCOM.001.2300728
  6. Riterman A., Bankov D., Lyakhov A. A Model of Channel Access with Preemption in Wi-Fi 8 Networks with Many Stations // Probl. Inf. Transm. 2025. V. 61. № 3 (to appear).
  7. Moon J., Kim R.Y. Preemptive Channel Access Scheme for Next Generation Wi-Fi // Proc. 2024 IEEE Int. Conf. on Big Data and Smart Computing (IEEE BigComp 2024). Bangkok, Thailand. Feb. 18–21, 2024. P. 131–135. https://doi.org/10.1109/BigComp60711.2024.00029
  8. Ритерман А.В., Банков Д.В., Ляхов А.И., Хоров Е.М. Об эффективности метода доступа к каналу с вытеснением в сетях Wi-Fi 8 // Пробл. передачи информ. 2024. Т. 60. № 4. С. 327–343. https://doi.org/10.31857/S0555292324040041
  9. Bankov D., Chemrov K., Khorov E. Tuning Channel Access to Enable Real-Time Applications in Wi-Fi 7 // 12th Int. Congr. on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT 2020). Brno, Czech Republic. Oct. 5–7, 2020. P. 20–25. https://doi.org/10.1109/ICUMT51630.2020.9222409
  10. Lichtzinder B.Ya., Privalov A.Yu. Generalization of Formulas for Queue Length Moments under Nonordinary Poissonian Arrivals for Batch Queues in Telecommunication Systems // Probl. Inf. Transm. 2023. V. 59. № 4. P. 243–248. https://doi.org/10.1134/S003294602304004X
  11. Uglovskii A.Yu., Melnikov I.A., Alexeev I.A., Kureev A.A. Effective Error Floor Estimation Based on Importance Sampling with the Uniform Distribution // Probl. Inf. Transm. 2023. V. 59. № 4. P. 217–224. https://doi.org/10.1134/S0032946023040014
  12. Bankov D.V., Khorov E.M., Lyakhov A.I., Sandal M.L. Approach to Real-Time Communications in Wi-Fi Networks // J. Commun. Technol. Electron. 2019. V. 64. P. 880–889. https://doi.org/10.1134/S1064226919080205
  13. Avdotin E., Bankov D., Khorov E., Lyakhov A. Enabling Massive Real-Time Applications in IEEE 802.11be Networks // Proc. IEEE 30th Annu. Int. Symp. on Personal, Indoor, and Mobile Radio Communications (IEEE PIMRC 2019). Istanbul, Turkey. Sept. 8–11, 2019. P. 1–6. https://doi.org/10.1109/PIMRC.2019.8904271

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).