Towards In-Place Fast Hough Transform Algorithm for Images of Arbitrary Size
- Authors: Kazimirov D.D1, Nikolaev D.P1, Rybakova E.O1, Terekhin A.P1
-
Affiliations:
- Issue: Vol 60, No 4 (2024)
- Pages: 91-115
- Section: Image Processing
- URL: https://journals.rcsi.science/0555-2923/article/view/280028
- DOI: https://doi.org/10.31857/S0555292324040065
- EDN: https://elibrary.ru/VKDONT
- ID: 280028
Cite item
Abstract
Keywords
About the authors
D. D Kazimirov
Email: d.kazimirov@smartengines.com
D. P Nikolaev
Email: d.p.nikolaev@smartengines.com
E. O Rybakova
Email: e.rybakova@smartengines.com
A. P Terekhin
Email: ars@iitp.ru
References
- Hough P.V.C. Machine Analysis of Bubble Chamber Pictures // Proc. 2nd Int. Conf. on High-Energy Accelerators and Instrumentation (HEACC 1959). CERN, Geneva, Switzerland. Sept. 14–19, 1959. P. 554–558.
- Rahmdel P.S., Comley R., Shi D., McElduff S. A Review of Hough Transform and Line Segment Detection Approaches // Proc. 10th Int. Conf. on Computer Vision Theory and Applications (VISAPP 2015). Berlin, Germany. Mar. 11–14, 2015. V. 2. P. 411–418. https://doi.org/10.5220/0005268904110418
- Mukhopadhyay P., Chaudhuri B.B. A Survey of Hough Transform // Pattern Recognit. 2015. V. 48. № 3. P. 993–1010. https://doi.org/10.1016/j.patcog.2014.08.027
- Illingworth J., Kittler J. A Survey of the Hough Transform // Comput. Vision Graph. Image Process. 1988. V. 44. № 1. P. 87–116. https://doi.org/10.1016/S0734-189X(88)80033-1
- Xu Z., Shin B., Klette R. Accurate and Robust Line Segment Extraction Using Minimum Entropy with Hough Transform // IEEE Trans. Image Process. 2014. V. 24. № 3. P. 813–822. https://doi.org/10.1109/TIP.2014.2387020
- Алиев М.А., Николаев Д.П., Сараев А.А. Построение быстрых вычислительных схем настройки алгоритма бинаризации Ниблэка // Тр. ИСА РАН. 2014. Т. 64. № 3. С. 25–34.
- Nikolaev D.P., Nikolayev P.P. Linear Color Segmentation and Its Implementation // Comput. Vis. Image Und. 2004. V. 94. № 1–3. P. 115–139. https://doi.org/10.1016/j.cviu.2003.10.012
- Saha S., Basu S., Nasipuri M., Basu D. A Hough Transform Based Technique for Text Segmentation // J. Comput. 2010. V. 2. № 2. P. 134–141.
- Кунина И.А., Гладилин С.А., Николаев Д.П. Слепая компенсация радиальной дисторсии на одиночном изображении с использованием быстрого преобразования Хафа // Компьютерная оптика. 2016. Т. 40. № 3. С. 395–403. https://doi.org/10.18287/2412-6179-2016-40-3-395-403
- Асватов Е.Н., Ершов Е.И., Николаев Д.П. Робастная ортогональная линейная регрессия для маломерных гистограмм // Сенсорные системы. 2017. Т. 31. № 4. С. 331–342.
- Brady M.L., Yong W. Fast Parallel Discrete Approximation Algorithms for the Radon Transform // Proc. 4th Ann. ACM Symp. on Parallel Algorithms and Architectures (SPAA’92). San Diego, California, USA. June 29 – July 1, 1992. P. 91–99. https://doi.org/10.1145/140901.140911
- Карпенко С.М., Ершов Е.И. Исследование свойств диадического паттерна быстрого преобразования Хафа // Пробл. передачи информ. 2021. Т. 57. № 3. С. 102–111. https://doi.org/10.31857/S0555292321030074
- Jahan R, Suman P., Singh D.K. Lane Detection Using Canny Edge Detection and Hough Transform on Raspberry Pi // Int. J. Adv. Res. Comput. Sci. 2018. V. 9. № 2. P. 85–89.
- Thongpan N., Rattanasiriwongwut M., Ketcham M. Lane Detection Using Embedded System // Int. J. Comput. Internet Manag. 2020. V. 28. № 2. P. 46–51.
- Panfilova E., Shipitko O.S., Kunina I. Fast Hough Transform-Based Road Markings Detection For Autonomous Vehicle // 13th Int. Conf. on Machine Vision (ICMV 2020). Rome,Italy. Nov. 2–6, 2020. Proc. SPIE. V. 11605. P. 671–680. https://doi.org/10.1117/12.2587615
- Котов А.А., Коноваленко И.А., Николаев Д.П. Прослеживание объектов в видеопотоке, оптимизированное с помощью быстрого преобразования Хафа // ИтиВС. 2015. № 1. С. 56–68.
- Tropin D.V., Ilyuhin S.A., Nikolaev D.P., Arlazarov V.V. Approach for Document Detection by Contours and Contrasts // Proc. 25th Int. Conf. on Pattern Recognition (ICPR 2020). Milan, Italy. Jan. 10–15, 2021. P. 9689–9695. https://doi.org/10.1109/ICPR48806.2021.9413271
- Bezmaternykh P.V., Nikolaev D.P. A Document Skew Detection Method Using Fast Hough Transform // 12th Int. Conf. on Machine Vision (ICMV 2019). Amsterdam, Netherlands. Nov. 16–18, 2020. Proc. SPIE. V. 11433. P. 132–137. https://doi.org/10.1117/12.2559069
- Min-Allah N., Qureshi M.B., Alrashed S., Rana O.F. Cost Efficient Resource Allocation for Real-Time Tasks in Embedded Systems // Sustainable Cities And Society. 2019 V. 48. Article No. 101523. https://doi.org/10.1016/j.scs.2019.101523
- Gupta R.K., De Micheli G. Specification and Analysis of Timing Constraints for Embedded Systems // IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1997. V. 16. № 3. P. 240–256. https://doi.org/10.1109/43.594830
- Surianarayanan C., Lawrence, J.J., Chelliah P.R., Prakash E., Hewage C. A Survey on Optimization Techniques for Edge Artificial Intelligence (AI) // Sensors. 2023. V. 23. № 3. Papaer No. 1279 (33 pp.). https://doi.org/10.3390/s23031279
- Ranjith M.S., Parameshwara S., Pavan Yadav A., Hegde S. Optimizing Neural Network for Computer Vision Task in Edge Device, https://arxiv.org/abs/2110.00791 [cs.CV], 2021.
- Sharmila B.S., Santhosh H.S., Parameshwara S., Swamy M.S., Baig W.H., Nanditha S.V. Optimizing Deep Learning Networks for Edge Devices with an Instance of Skin Cancer and Corn Leaf Disease Dataset // SN Comput. Sci. 2023. V. 4. Article No. 793. https://doi.org/10.1007/s42979-023-02239-5
- Comeag˘ a A.-M., Marin I. Memory Management Strategies for an Internet of Things System, https://arxiv.org/abs/2311.10458 [cs.SE], 2023.
- Almutairi R., Bergami G., Morgan G. Advancements and Challenges in IoT Simulators: A Comprehensive Review // Sensors. 2024. V. 24. № 5. Paper No. 1511 (35 pp.), https: //doi.org/10.3390/s24051511
- Anikeev F.A., Raiko G.O., Limonova E.E., Aliev M.A., Nikolaev D.P. Efficient Implementation of Fast Hough Transform Using CPCA Coprocessor // Program. Comput. Soft. 2021. V. 47. № 5. P. 335–343. https://doi.org/10.1134/S0361768821050029
- Kazimirov D., Nikolaev D., Rybakova E., Terekhin A. Generalization of Brady–Yong Algorithm for Fast Hough Transform to Arbitrary Image Size, https://arxiv.org/abs/2411.07351 [cs.CV], 2024.
- Kazimirov D., Nikolaev D., Rybakova E., Terekhin A. Generalization of Brady–Yong Algorithm for Fast Hough Transform to Arbitrary Image Size // Proc. 5th Symp. on Pattern Recognition and Applications (SPRA 2024). Istanbul, Turkey. Nov. 11–13, 2024 (to appear).
- Gava M.A., Rocha H.R.O., Faber M.J., Segatto M.E.V., W¨ ortche H., Silva J.A.L. Optimizing Resources and Increasing the Coverage of Internet-of-Things (IoT) Networks: An Approach Based on LoRaWAN // Sensors. 2023. V. 23. № 3. Paper No. 1239 (17 pp.). https://doi.org/10.3390/s23031239
- Almurshed O., Meshoul S., Muftah A., Kaushal A.K., Almoghamis O., Petri I., Auluck N., Rana O. A Framework for Performance Optimization of Internet of Things Applications // Euro-Par 2023: Parallel Processing Workshops (Euro-Par 2023 Int. Workshops. Limassol, Cyprus. Aug. 28 – Sept. 1, 2023. Revised Selected Papers, Part I). Lect. Notes Comput. Sci. V. 14351. Cham: Springer, 2024. P. 165–176. https://doi.org/10.1007/978-3-031-50684-0_13
- Chakraborty S., Mukherjee A., Raman V., Satti S.R. A Framework for In-place Graph Algorithms // 26th Annu. Europ. Symp. on Algorithms (ESA 2018). Helsinki, Finland. Aug. 20–22, 2018. Leibniz Int. Proc. Inform. (LIPIcs). V. 112. Schloss Dagstuhl – LeibnizZentrum f¨ ur Informatik, Germany: Dagstuhl Publ., 2018. P. 13:1–13:16. https://doi.org/10.4230/LIPIcs.ESA.2018.13
- Axtmann M., Witt S., Ferizovic D., Sanders P. Engineering In-place (Shared-Memory) Sorting Algorithms // ACM Trans. Parallel Comput. 2022. V. 9. № 1. P. 1–62. https://doi.org/10.1145/3505286
- Gu Y., Obeya O., Shun J. Parallel In-place Algorithms: Theory and Practice // 2nd Symp. on Algorithmic Principles of Computer Systems (APOCS 2020). Virtual Conf. Jan. 13, 2021.P. 114–128. https://doi.org/10.1137/1.9781611976489.9
- Br¨onnimann H., Chan T.M., Chen E.Y. Towards In-place Geometric Algorithms and Data Structures // Proc. 12th Annu. Symp. on Computational Geometry (SCG’04). Brooklyn, New York, USA. June 8–11, 2004. P. 239–246. https://doi.org/10.1145/997817.997854
- Kuszmaul W., Westover A. Cache-Efficient Parallel-Partition Algorithms Using ExclusiveRead-and-Write Memory // Proc. 32nd ACM Symp. on Parallelism in Algorithms and Architectures (SPAA’20). Virtual Event, USA. July 15–17, 2020. P. 551–553. https://doi.org/10.1145/3350755.3400234
- Bramas B., Bramas Q. On the Improvement of the In-place Merge Algorithm Parallelization, https://arxiv.org/abs/2005.12648 [cs.DC], 2020.
- Cooley J.W., Tukey J.W. An Algorithm for the Machine Calculation of Complex Fourier Series // Math. Comp. 1965. V. 19. № 90. P. 297–301. https://doi.org/10.2307/2003354
- Brady M.L., Yong W. Fast Parallel Discrete Approximation Algorithms for the Radon Transform // Proc. 4th Ann. ACM Symp. on Parallel Algorithms and Architectures (SPAA’92). San Diego, California, USA. June 29 – July 1, 1992. P. 91–99. https://doi.org/10.1145/140901.140911
- Khanipov T. Computational Complexity Lower Bounds of Certain Discrete Radon Transform Approximations, https://arxiv.org/abs/1801.01054 [cs.CC], 2018.
- Johnson H., Burrus C. An In-order, In-place Radix-2 FFT // Proc. ICASSP’84: IEEE Int. Conf. on Acoustics, Speech, and Signal Processing. San Diego, CA, USA. Mar. 19–21, 1984. P. 473–476. https://doi.org/10.1109/ICASSP.1984.1172660
- IITP Vision Lab. adrt: Approximate Discrete Radon Transform. GitHub repository, accessed 21.10.2024. https://github.com/iitpvisionlab/adrt
Supplementary files
