Time Synchronization in Satellite Quantum Key Distribution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Time synchronization is one of the most crucial issues that must be addressed in developing quantum key distribution (QKD) systems. It not only lets the transmitter and the receiver to assign a sequence number to each event and then do correct basis reconciliation, but also allows to increase signal-to-noise ratio. Time synchronization in satellite communications is especially complicated due to such factors as high loss, signal fading, and Doppler effect. In this work, a simple, efficient, and robust algorithm for time synchronization is proposed. It was tested during experiments on QKD between Micius, the world’s first quantum communications satellite, and an optical ground station located in Russia. The obtained synchronization precision lies in the range from 467 to 497 ps. The authors compare their algorithm for time synchronization with the previously used methods. The proposed approach can also be applied to terrestrial QKD systems.

About the authors

A. V. Miller

Moscow Centre for Quantum Technologies

Author for correspondence.
Email: avm@mcqt.ru

ООО “Московский центр квантовых технологий”

Moscow, Russia

References

  1. Bennett C.H., Brassard G. Quantum Cryptography: Public Key Distribution and Coin Tossing // Proc. Int. Conf. of Computers, Systems & Signal Processing. Bangalore, India. Dec. 9–12, 1984. V. 1. P. 175–179.
  2. Bennett C.H., Bessette F., Brassard G., Salvail L., Smolin J. Experimental Quantum Cryptography// J. Cryptol. 1992. V. 5. № 1. P. 3–28. https://doi.org/10.1007/BF00191318
  3. Schmitt-Manderbach T., Weier H., Furst M., Ursin R., Tiefenbacher F., Scheidl T., Perdigues J., Sodnik Z., Kurtsiefer C., Rarity J.G., Zeilinger A., Weinfurter H Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km // Phys. Rev. Lett. 2007. V. 98. № 1. P. 010504 (4 pp.). https://doi.org/10.1103/PhysRevLett.98.010504
  4. Liu Y., Zhang W.-J., Jiang C., Chen J.-P., Zhang C., Pan W.-X., Ma D., Dong H., Xiong J.-M., Zhang C.-J., Li H., Wang R.-C., Wu J., Chen T.-Y., You L., Wang X.-B., Zhang Q., Pan, J.-W. Experimental Twin-Field Quantum Key Distribution over 1000 km Fiber Distance // Phys. Rev. Lett. 2023. V. 130. № 21. P. 210801 (6 pp.). https://doi.org/10.1103/PhysRevLett.130.210801
  5. Liao S.-K., Cai W.-Q., Liu W.-Y., Zhang L., Li Y., Ren J.-G., Yin J., Shen Q., Cao Y., Li Z.-P., Li F.-Z., Chen X.-W., Sun L.-H., Jia J.-J., Wu J.-C., Jiang X.-J., Wang J.-F., Huang Y.-M., Wang Q., Zhou Y.-L., Deng L., Xi T., Ma L., Hu T., Zhang Q., Chen Y.-A., Liu N.-L., Wang X.-B., Zhu Z.-C., Lu C.-Y., Shu R., Peng C.-Z., Wang J.-Y., Pan J.-W. Satellite-to-Ground Quantum Key Distribution // Nature. 2017. V. 549. № 7670. P. 43–47. https://doi.org/10.1038/nature23655
  6. Liao S.-K., Cai W.-Q., Handsteiner J., Liu B., Yin J., Zhang L., Rauch D., Fink M., Ren J.-G., Liu W.-Y., Li Y., Shen Q., Cao Y., Li F.-Z., Wang J.-F., Huang Y.-M., Deng L., Xi T., Ma L., Hu T., Li L., Liu N.-L., Koidl F., Wang P., Chen Y.-A., Wang X.-B., SteindorferM., Kirchner G., Lu C.-Y., Shu R., Ursin R., Scheidl T., Peng C.-Z., Wang J.-Y., Zeilinger A., Pan J.-W. Satellite-Relayed Intercontinental Quantum Network // Phys. Rev.Lett. 2018. V. 120. № 3. P. 030501 (4 pp.). https://doi.org/10.1103/PhysRevLett.120. 030501
  7. Chen Y.-A., Zhang Q., Chen T.-Y., Cai W.-Q., Liao S.-K., Zhang J., Chen K., Yin J., Ren J.-G., Chen Z., Han S.-L., Yu Q., Liang K., Zhou F., Yuan X., Zhao M.-S., Wang T.-Y., Jiang X., Zhang L., Liu W.-Y., Li Y., Shen Q., Cao Y., Lu C.-Y., Shu R., Wang J.-Y., Li L., Liu N.-L., Xu F., Wang X.-B., Peng C.-Z., Pan J.-W. An Integrated Space-to-Ground Quantum Communication Network over 4,600 Kilometres // Nature. 2021. V. 589. № 7841. P. 214–219. https://doi.org/10.1038/s41586-020-03093-8
  8. Yin J., Cao Y., Li Y.-H., Liao S.-K., Zhang L., Ren J.-G., Cai W.-Q., Liu W.-Y., Li B., Dai H., Li G.-B., Lu Q.-M., Gong Y.-H., Xu Y., Li S.-L., Li F.-Z., Yin Y.-Y., Jiang Z.-Q., Li M., Jia J.-J., Ren G., He D., Zhou Y.-L., Zhang X.-X., Wang N., Chang X., Zhu Z.-C., Liu N.-L., Chen Y.-A., Lu C.-Y., Shu R., Peng C.-Z., Wang J.-Y., Pan J.-W. Satellite-Based Entanglement Distribution over 1200 Kilometers // Science. 2017. V. 356. № 6343. P. 1140–1144. https://doi.org/10.1126/science.aan3211
  9. Yin J., Li Y.-H., Liao S.-K., Yang M., Cao Y., Zhang L., Ren J.-G., Cai W.-Q., Liu W.-Y., Li S.-L., Shu R., Huang Y.-M., Deng L., Li L., Zhang Q., Liu N.-L., Chen Y.-A., Lu C.-Y., Wang X.-B., Xu F., Wang J.-Y., Peng C.-Z., Ekert A.K., Pan J.-W. Entanglement-Based Secure Quantum Cryptography over 1,120 Kilometres // Nature. 2020. V. 582. № 7813.P. 501–505. https://doi.org/10.1038/s41586-020-2401-y
  10. Ren J.-G., Xu P., Yong H.-L., Zhang L., Liao S.-K., Yin J., Liu W.-Y., Cai W.-Q., Yang M., Li L., Yang K.-X., Han X., Yao Y.-Q., Li J., Wu H.-Y., Wan S., Liu L., Liu D.-Q., Kuang Y.-W., He Z.-P., Shang P., Guo C., Zheng R.-H., Tian K., Zhu Z.-C., Liu N.-L., Lu C.-Y., Shu R., Chen Y.-A., Peng C.-Z., Wang J.-Y., Pan J.-W. GroundtoSatellite Quantum Teleportation // Nature. 2017. V. 549. № 7670. P. 70–73. https://doi.org/10.1038/nature23675
  11. Beveratos A., Brouri R., Gacoin T., Villing A., Poizat J.-P., Grangier P. Single Photon Quantum Cryptography // Phys. Rev. Lett. 2002. V. 89. № 18. P. 187901 (4 pp.). https://doi.org/10.1103/PhysRevLett.89.187901
  12. Stucki D., Gisin N., Guinnard O., Ribordy G., Zbinden H. Quantum Key Distribution over 67 km with a Plug&Play System // New J. Phys. 2002. V. 4. P. 41 (8 pp.). https://doi.org/10.1088/1367-2630/4/1/341
  13. Sasaki M., Fujiwara M., Ishizuka H., Klaus W., Wakui K., Takeoka M., Miki S., Yamashita T., Wang Z., Tanaka A., Yoshino K., Nambu Y., Takahashi S., Tajima A., Tomita A., Domeki T., Hasegawa T., Sakai Y., Kobayashi H., Asai T., Shimizu K., Tokura T., Tsurumaru T., Matsui M., Honjo T., Tamaki K., Takesue H., Tokura Y., Dynes J.F., Dixon A.R., Sharpe A.W., Yuan Z.L., Shields A.J., Uchikoga S., Legre M., Robyr S., Trinkler P., Monat L., Page J.-B., Ribordy G., Poppe A., Allacher A., Maurhart O., Langer T., Peev M., Zeilinger A. Field Test of Quantum Key Distribution in the Tokyo QKD Network // Opt. Express. 2011. V. 19. № 11. P. 10387–10409. https://doi.org/10.1364/OE.19.010387
  14. Wang S., Chen W., Yin Z.-Q., Li H.-W., He D.-Y., Li Y.-H., Zhou Z., Song X.-T., Li F.-Y., Wang D., Chen H., Han Y.-G., Huang J.-Z., Guo J.-F., Hao P.-L., Li M., Zhang C.-M., Liu D., Liang W.-Y., Miao C.-H., Wu P., Guo G.-C., Han Z.-F. Field and Long-Term Demonstration of a Wide Area Quantum Key Distribution Network // Opt. Express. 2014. V. 22. № 18. P. 21739–21756. https://doi.org/10.1364/OE.22.021739
  15. Wang C., Li Y., Cai W., Yang M., Liu W., Liao S., Peng C. Robust Aperiodic Synchronous Scheme for Satellite-to-Ground Quantum Key Distribution // Appl. Opt. 2021. V. 60. №16. P. 4787–4792. https://doi.org/10.1364/AO.425085
  16. Shakhovoy R., Puplauskis M., Sharoglazova V., Maksimova E., Hydyrova S., Kurochkin V., Duplinskiy A. Wavelength- and Time-Division Multiplexing via Pump Current Variation of a Pulsed Semiconductor Laser—A Method of Synchronization for Quantum Key Distribution // IEEE J. Quantum Electron. 2023. V. 59. № 1. Article No. 8000110 (10 pp.). https://doi.org/10.1109/JQE.2023.3237265
  17. Calderaro L., Stanco A., Agnesi C., Avesani M., Dequal D., Villoresi P., Vallone G. Fast and Simple Qubit-Based Synchronization for Quantum Key Distribution // Phys. Rev. Appl. 2020. V. 13. №5. P. 054041 (9 pp.). https://doi.org/10.1103/PhysRevApplied.13.054041
  18. Wang C.-Z., Li Y., Cai W.-Q., Liu W.-Y., Liao S.-K., Peng C.-Z. Synchronization Using Quantum Photons for Satellite-to-Ground Quantum Key Distribution // Opt. Express. 2021. V. 29. № 19. P. 29595–29603. https://doi.org/10.1364/OE.433631
  19. Takenaka H., Carrasco-Casado A., Fujiwara M., Kitamura M., Sasaki M., Toyoshima M. Satellite-to-Ground Quantum-Limited Communication Using a 50-kg-Class Microsatellite //Nat. Photon. 2017. V. 11. P. 502–508. https://doi.org/10.1038/nphoton.2017.107 20. Lu C.-Y., Cao Y., Peng C.-Z., Pan J.-W. Micius Quantum Experiments in Space // Rev.Mod. Phys. 2022. V. 94. № 3. P. 035001 (46 pp.). https://doi.org/10.1103/RevModPhys. 94.035001
  20. Хмелев А.В., Дуплинский А.В., Майборода В.Ф., Бахшалиев Р.М., Баланов М.Ю., Курочкин В.Л., Курочкин Ю.В. Регистрация однофотонного сигнала от низколетящих спутников для целей спутникового квантового распределения ключей // Письма в ЖТФ. 2021. Т. 47. № 17. С. 46–49. https://doi.org/10.21883/PJTF.2021.17.51387. 18817
  21. Khmelev A.V., Duplinsky A.V., Kurochkin V.L., Kurochkin Y.V. Stellar Calibration of the Single-Photon Receiver for Satellite-to-Ground Quantum Key Distribution // J. Phys.: Conf. Ser. 2021. V. 2086. № 1. P. 012137 (5 pp.). https://doi.org/10.1088/1742-6596/2086/1/012137
  22. Khmelev A.V., Ivchenko E.I., Miller A.V., Duplinsky A.V., Kurochkin V.L., Kurochkin Yu.V. Semi-Empirical Satellite-to-Ground Quantum Key Distribution Model for Realistic Receivers // Entropy. 2023. V. 25. № 4. P. 670 (14 pp.), https://doi.org/10.3390/e25040670 24. Miller A.V., Pismeniuk L.V., Duplinsky A.V., Merzlinkin V.E., Plukchi A.A., TikhonovaK.A., Nesterov I.S., Sevryukov D.O., Levashov S.D., Fetisov V.V., Krasnopejev S.V., Bakhshaliev R.M. Vector—Towards Quantum Key Distribution with Small Satellites // EPJ Quantum Technol. 2023. V. 10. Article No. 52 (20 pp.). https://doi.org/10.1140/epjqt/s40507-023-00208-8
  23. Wu Q.-L., Han Z.-F., Miao E.-L., Liu Y., Dai Y.-M., Guo G.-C. Synchronization of Free-Space Quantum Key Distribution // Opt. Commun. 2007. V. 275. № 2. P. 486–490. https://doi.org/10.1016/j.optcom.2007.03.068

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».