Feasibility of data transmission under attack: from isolated toughness variant perspective

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The graph model is an appreciable tool for data transmission network, where the feasibility of data transmission in site attack circumstances can be described by fractional critical graphs, and the vulnerability of networks can be measured by isolation toughness variant. This paper considers both the stability of the network and the feasibility of data transmission when the sites are destroyed, and determines the isolated toughness variant bound for fractional (a, b, n)-critical graphs, where the parameter n represents the number of damaged sites at a certain moment. A counterexample proves the sharpness of the given isolated toughness variant bound. The main theoretical conclusion provides an equilibrium between performance and cost in network topology designing.

作者简介

Wei Gao

Yunnan Normal University

Email: gaowei@ynnu.edu.cn
Kunming, China

Hacı Başkonuş

Harran University

Email: hmbaskonus@gmail.com
Sanliurfa, Turkey

Carlo Cattani

University of Tuscia

Email: cattani@unitus.it
Viterbo, Italy

参考

  1. Zhou S., Liu H., Xu Y. A Note on Fractional ID-[a, b]-Factor-Critical Covered Graphs // Discrete Appl. Math. 2022. V. 319. P. 511-516. https://doi.org/10.1016/j.dam.2021.03.004
  2. Zhou S., Wu J., Bian Q. On Path-Factor Critical Deleted (or Covered) Graphs // Aequationes Math. 2022. V. 96. № 4. P. 795-802. https://doi.org/10.1007/s00010-021-00852-4
  3. Zhou S., Wu J., Liu H. Independence Number and Connectivity for Fractional (a, b, k)-Critical Covered Graphs // RAIRO Oper. Res. 2022. V. 56. № 4. P. 2535-2542. https://doi.org/10.1051/ro/2022119
  4. Gao W., Wang W. New Isolated Toughness Condition for Fractional (g, f, n)-Critical Graphs // Colloq. Math. 2017. V. 147. P. 55-66. https://doi.org/10.4064/cm6713-8-2016
  5. Woodall D. The Binding Number of a Graph and Its Anderson Number // J. Combin. Theory Ser. B. 1973. V. 15. № 3. P. 225-255. https://doi.org/10.1016/0095-8956(73)90038-5
  6. Chvátal V. Tough Graphs and Hamiltonian Circuits // Discrete Math. 1973. V. 5. № 3. P. 215-228. https://doi.org/10.1016/0012-365X(73)90138-6
  7. Enomoto H. Toughness and the Existence of k-Factors. III // Discrete Math. 1998. V. 189. № 1-3. P. 277-282. https://doi.org/10.1016/S0012-365X(98)00059-4
  8. Yang J., Ma Y., Liu G. Fractional (g, f)-Factors of Graphs // Appl. Math. J. Chinese Univ. Ser. A (Chinese) 2001. V. 16. № 4. P. 385-390.
  9. Ma Y., Liu G. Isolated Toughness and the Existence of Fractional Factors // Acta Math. Appl. Sin. (Chinese). 2003. V. 26. № 1. P. 133-140.
  10. He Z., Liang L., Gao W. Isolated Toughness Variant and Fractional k-Factor // RAIRO Oper. Res. 2022. V. 56. № 5. P. 3675-3688. https://doi.org/10.1051/ro/2022177
  11. Gao W., Wang W., Zheng L. Fuzzy Fractional Factors in Fuzzy Graphs // Int. J. Intell. Syst. 2022. V. 37. № 11. P. 9886-9903. https://doi.org/10.1002/int.23019
  12. Gao W., Wang W., Chen Y. Tight Isolated Toughness Bound for Fractional (k, n)-Critical Graphs // Discrete Appl. Math. 2022. V. 322. P. 194-202. https://doi.org/10.1016/j.dam.2022.08.028
  13. Zhou S. A Neighborhood Union Condition for Fractional (a, b, k)-Critical Covered Graphs // Discrete Appl. Math. 2022. V. 323. P. 343-348. https://doi.org/10.1016/j.dam.2021.05.022
  14. Zhang W., Wang S. Discussion on Fractional (a, b, k)-Critical Covered Graphs // Acta Math. Appl. Sin. Engl. Ser. 2022. V. 38. № 2. P. 304-311. https://doi.org/10.1007/s10255-022-1076-6
  15. Gao W., Wang W., Chen Y. Isolated Toughness and Fractional (a, b, n)-Critical Graphs // Connect. Sci. 2023. V. 35. № 1. Article 2181482 (15 pp.). https://doi.org/10.1080/09540091.2023.2181482
  16. Bondy J.A., Mutry U.S.R. Graph Theory. Berlin: Springer, 2008.
  17. Liu S. On Toughness and Fractional (g, f, n)-Critical Graphs // Inform. Process Lett. 2010. V. 110. № 10. P. 378-382. https://doi.org/10.1016/j.ipl.2010.03.005

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##