Feasibility of data transmission under attack: from isolated toughness variant perspective
- Authors: Gao W.1, Başkonuş H.M.2, Cattani C.3
-
Affiliations:
- Yunnan Normal University
- Harran University
- University of Tuscia
- Issue: Vol 59, No 2 (2023)
- Pages: 83-101
- Section: Articles
- URL: https://journals.rcsi.science/0555-2923/article/view/247410
- DOI: https://doi.org/10.31857/S0555292323020067
- EDN: https://elibrary.ru/PQHKAT
- ID: 247410
Cite item
Abstract
About the authors
Wei Gao
Yunnan Normal University
Email: gaowei@ynnu.edu.cn
Kunming, China
Hacı Mehmet Başkonuş
Harran University
Email: hmbaskonus@gmail.com
Sanliurfa, Turkey
Carlo Cattani
University of Tuscia
Email: cattani@unitus.it
Viterbo, Italy
References
- Zhou S., Liu H., Xu Y. A Note on Fractional ID-[a, b]-Factor-Critical Covered Graphs // Discrete Appl. Math. 2022. V. 319. P. 511-516. https://doi.org/10.1016/j.dam.2021.03.004
- Zhou S., Wu J., Bian Q. On Path-Factor Critical Deleted (or Covered) Graphs // Aequationes Math. 2022. V. 96. № 4. P. 795-802. https://doi.org/10.1007/s00010-021-00852-4
- Zhou S., Wu J., Liu H. Independence Number and Connectivity for Fractional (a, b, k)-Critical Covered Graphs // RAIRO Oper. Res. 2022. V. 56. № 4. P. 2535-2542. https://doi.org/10.1051/ro/2022119
- Gao W., Wang W. New Isolated Toughness Condition for Fractional (g, f, n)-Critical Graphs // Colloq. Math. 2017. V. 147. P. 55-66. https://doi.org/10.4064/cm6713-8-2016
- Woodall D. The Binding Number of a Graph and Its Anderson Number // J. Combin. Theory Ser. B. 1973. V. 15. № 3. P. 225-255. https://doi.org/10.1016/0095-8956(73)90038-5
- Chvátal V. Tough Graphs and Hamiltonian Circuits // Discrete Math. 1973. V. 5. № 3. P. 215-228. https://doi.org/10.1016/0012-365X(73)90138-6
- Enomoto H. Toughness and the Existence of k-Factors. III // Discrete Math. 1998. V. 189. № 1-3. P. 277-282. https://doi.org/10.1016/S0012-365X(98)00059-4
- Yang J., Ma Y., Liu G. Fractional (g, f)-Factors of Graphs // Appl. Math. J. Chinese Univ. Ser. A (Chinese) 2001. V. 16. № 4. P. 385-390.
- Ma Y., Liu G. Isolated Toughness and the Existence of Fractional Factors // Acta Math. Appl. Sin. (Chinese). 2003. V. 26. № 1. P. 133-140.
- He Z., Liang L., Gao W. Isolated Toughness Variant and Fractional k-Factor // RAIRO Oper. Res. 2022. V. 56. № 5. P. 3675-3688. https://doi.org/10.1051/ro/2022177
- Gao W., Wang W., Zheng L. Fuzzy Fractional Factors in Fuzzy Graphs // Int. J. Intell. Syst. 2022. V. 37. № 11. P. 9886-9903. https://doi.org/10.1002/int.23019
- Gao W., Wang W., Chen Y. Tight Isolated Toughness Bound for Fractional (k, n)-Critical Graphs // Discrete Appl. Math. 2022. V. 322. P. 194-202. https://doi.org/10.1016/j.dam.2022.08.028
- Zhou S. A Neighborhood Union Condition for Fractional (a, b, k)-Critical Covered Graphs // Discrete Appl. Math. 2022. V. 323. P. 343-348. https://doi.org/10.1016/j.dam.2021.05.022
- Zhang W., Wang S. Discussion on Fractional (a, b, k)-Critical Covered Graphs // Acta Math. Appl. Sin. Engl. Ser. 2022. V. 38. № 2. P. 304-311. https://doi.org/10.1007/s10255-022-1076-6
- Gao W., Wang W., Chen Y. Isolated Toughness and Fractional (a, b, n)-Critical Graphs // Connect. Sci. 2023. V. 35. № 1. Article 2181482 (15 pp.). https://doi.org/10.1080/09540091.2023.2181482
- Bondy J.A., Mutry U.S.R. Graph Theory. Berlin: Springer, 2008.
- Liu S. On Toughness and Fractional (g, f, n)-Critical Graphs // Inform. Process Lett. 2010. V. 110. № 10. P. 378-382. https://doi.org/10.1016/j.ipl.2010.03.005
Supplementary files
