Competitive Polarization Fluorescence Aptamer Analysis of Aflatoxin B1: Influence of Salt Composition of the Reaction Medium on the Interaction of Reagents and Detection Limit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work examines the interaction of an aptamer (a synthetic receptor based on single-stranded DNA) having a loop structure with a specific ligand – aflatoxin B1 (AFB1), a common toxic contaminant of food products. The effects of mono- and divalent cations (Cs +, Li + , Na + , K +, Sr 2+, Ba 2+ , Mg 2+, Ca 2+) in different concentrations on the reactivity of the aptamer were studied. The fluorescence anisotropy (FA) of the fluorescein-labeled AFB1 derivative was recorded, reflecting both binding to the aptamer and the mobility of the aptamer – labeled AFB1 complex in a given reaction medium. It was shown that the recorded changes in FA differ significantly depending on the cation present in the reaction medium and its concentration. The effect on FA of monovalent cations was observed in the range of 400 mM–2.5 M, for divalent cations it is more pronounced and corresponds to concentrations from 6 to 200 mM. According to the degree of FA changes, the cations form the rows Cs + << K + ≤ ≤ Li + < Na + and Ba 2+ < Sr 2+ < Ca 2+ < Mg 2+. Comparison of the characteristics of the competitive determination of AFB1 for the traditional reaction medium and the medium with a 50-fold (from 20 mM to 1.0 M) increase in the concentration of magnesium acetate demonstrated that the given increase caused a 12-fold decrease in the detection limit – to 2.5 ± 0.4 nM. The results obtained allow considering choice of cation content as an effective tool for creating highly sensitive aptamer-based analytical systems.

About the authors

A. V. Samokhvalov

Bach Institute of Biochemistry, of Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, 119071 Russia

A. V. Zherdev

Bach Institute of Biochemistry, of Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, 119071 Russia

B. B. Dzantiev

Bach Institute of Biochemistry, of Research Center of Biotechnology of the Russian Academy of Sciences

Email: dzantiev@inbi.ras.ru
Moscow, 119071 Russia

References

  1. Adachi T., Nakamura Y. // Molecules. 2019. V. 24. № 23. Article 4229. https://doi.org/10.3390/molecules24234229
  2. Ilgu M., Nilsen-Hamilton M. // Analyst. 2016. V. 141. № 5. P. 1551– 1568. https://doi.org/10.1039/c5an01824b
  3. Sharma A., Khan R., Catanante G., Sherazi T.A., Bhand S., Hayat A., Marty J. L. // Toxins. 2018. V. 10. № 5. Article 197. https://doi.org/10.3390/toxins10050197
  4. Musumeci D., Platella C., Riccardi C., Moccia F., Montesarchio D. // Cancers. 2017. V. 9. № 12. Article 174. https://doi.org/10.3390/cancers9120174
  5. Lipfert J., Doniach S., Das R., Herschlag D . // Annu. Rev. Biochem. 2014. V. 83. № 1. P. 813–841. https://doi.org/1 0.1146/annurev-biochem-060409- 092720
  6. Bloomfield V.A. // Biopolymers. 1997. V. 44. № 3. P. 269–282. https://doi.org/10.1002/(SICI)1097-0282(1997)44:3 <269::AID-BIP6>3.0.CO;2-T
  7. Bosco A., Camunas-Soler J., Ritort F. // Nucleic Acids Res. 2014. V. 42. № 3. P. 2064–2074 . https://doi.org/ 10.1093/nar/gkt1089
  8. Kim S.E., Hong S.-C. // J. Phys. Chem. B. 2023. V. 127. № 9. P. 1932–1939. https://doi.org/10.1021/acs.jpcb.2c07069
  9. Luo Y., Granzhan A., Marquevielle J., Cucchiarini A., Lacroix L., Amrane S. et al. // Biochimie. 2023. V. 214. Part A. P. 5–23. https://doi.org/10.1016/j.biochi.2022.12.019
  10. Nakatsuka N., Abendroth J.M., Yang K.-A., And- rews A.M. // ACS Applied Materials & Interfaces. 2021. V. 13 . № 8. P. 9425–9435. https://doi.org/10.1021/acsami.0c17535
  11. Samokhvalov A.V., Safenkova I.V., Eremin S.A., Zher-dev A.V., Dzantiev B.B. // Anal. Chim. Acta. 2017. V. 962. P. 80–87. https://doi.org/10.1021/acs.analchem.8b01699
  12. Shamsi M.H., Kraatz H.-B. // J. Inorg . Organometall. Polymers Materials. 2013. V. 23. № 1. P. 4– 23. https://doi.org/10.1007/s10904-012-9694-8
  13. Bhattacharyya D., Mirihana Arachchilage G., Basu S. // Front. Chem. 2016. V. 4. Аrticle 38. https://doi.org/10.3389/fchem.2016.00038
  14. Cruz-Aguado J.A., Penner G. // J. Agric. Food Chem. 2008. V. 56. № 22. P. 10456–10461. https://doi.org/10.1021/jf801957h
  15. Wang X., Hao Z., Olsen T.R., Zhang W., Lin Q. // Nanoscale. 2019. V. 11. № 26. P. 12573–12581. https://doi.org/10.1039/C9NR02797A
  16. Hetzke T., Vogel M., Gophane D.B., Weigand J.E., Suess B., Sigurdsson S.T., Prisner T.F. // RNA. 2019. V. 25. № 1. P. 158–167. https://doi.org/10.1261/rna.068684.118
  17. Potty A.S., Kourentzi K., Fang H., Jackson G.W., Zhang X., Legge G.B., Willson R.C. // Biopolymers. 2009. V. 91. № 2. P. 145–156. https://doi.org/10.1002/bip.21097
  18. Le L.C., Cruz-Aguado J.A., Penner G.A. DNA Ligands for Aflatoxin and Zearalenone. 2011. Международный патент № PCT/CA2010/001292.
  19. Xu G., Wang C., Yu H., Li Y., Zhao Q., Zhou X., Li C., Liu M. // Nucleic Acids Res. 2023. V. 51. № 14. P. 7666–7674. https://doi.org/10.1093/nar/gkad541
  20. Sun L., Zhao Q. // Talanta. 2018. V. 189. P. 442–450. https://doi.org/10.1016/j.talanta.2018.07.036
  21. Sheng Y.J., Eremin S., Mi T.J., Zhang S.X., Shen J.Z., Wang Z.H. // Biomed. Environ. Sci. 2014. V. 27. № 2. P. 126–129 . https://doi.org/10.3967/bes2014.027
  22. Lakowicz J. R. Principles of Fluorescence Spectroscopy. Springer. 2006. P. 353–370.
  23. Vorlickova M., Kejnovska I., Bednarova K., Renciuk D., Kypr J. // Chirality. 2012. V. 24. № 9. P. 691–698. https://doi.org/10.1002/chir.22064

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).