Low Temperatures Stimulate Alternative Splicing of the CPK26 Gene in Vitis amurensis Grapes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Alternative splicing ( AS ) is a non-canonical gene splicing process that allows a single gene to synthesise multiple protein isoforms and enhance a variety of protein functions. In this study, the involvement of AS in the generation of plant resistance to abiotic stresses was investigated using the VaCPK26 calcium-dependent protein kinase ( CPK ) gene, which is responsible for the resistance of Vitis amurensis Rupr. grapes to soil salinity and drought. The level of VaCPK26 transcription in grape leaves was studied under the influence of different environmental factors. Under low temperature exposure, in addition to the full-length VaCPK26 transcript, a short-spliced VaCPK26s1 transcript was obtained that lacked the 2nd exon of the 7 that make up the full-length VaCPK26 . Recombinant VaCPK26 increased the resistance of grape cells to salt stress and drought, and overexpression of the spliced VaCPK26s1 transcript in V. amurensis grape cell cultures had no effect on resistance to the stresses tested. These results show that AS can lead to the loss of properties of spliced transcripts characteristic of the original full-length form, which is important for a complete understanding of the biological functions of CPK and alternative splicing.

About the authors

K. V. Kiselev

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences

Email: kiselev@biosoil.ru
Vladivostok, 690022 Russia

A. S. Dubrovina

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences

Vladivostok, 690022 Russia

Z. V. Ogneva

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences

Vladivostok, 690022 Russia

O. A. Aleynova

Federal Scientific Center of the Biodiversity, Far Eastern Branch of the Russian Academy of Sciences

Vladivostok, 690022 Russia

References

  1. Tognacca R . S ., Rodr í guez F . S ., Aballay F . E ., Cartage- na C . M ., Servi L ., Petrillo E . // J . Exp . Bot . 2023. V. 74. P. 2251–2272. https://doi.org/10.1093/jxb/erac431
  2. Filichkin S.A., Priest H.D., Givan S.A., Shen R., Bry-ant D.W., Fox S.E., Wong, W.K., Mockler T.C. // Genome Research. 2010. V. 20. P. 45–58. https://doi.org/10.1101/gr.093302.109
  3. Marquez Y., Brown J.W., Simpson C., Barta A., Kaly- na M. // Genome Research. 2012. V. 22. P. 1184–1195. https://doi.org/10.1101/gr.134106.111
  4. Carvalho R.F., Feijão C.V., Duque P. // Protoplasma . 2013. V. 250. P. 639–650. https://doi.org/10.1007/s00709-012-0448-9
  5. Dubrovina A.S., Kiselev K.V., Zhuravlev Y.N. // BioMed Res. Int. 2013 . V. 2013. P. 264314. https://doi.org/10.1155/2013/264314
  6. Alhabsi A., Ling Y., Crespi M., Reddy A.S.N., Mahfo- uz M. // Ann. Rev. Plant Biol. 2025. V. 76. P. 687–717. https://doi .org/10.1146/annurev-arplant-083123- 090055
  7. Kurihara D., Kawabe A., Matsunaga S., Nakagawa K., Fujimoto S., Uchiyama S., Fukui K. // Plant and Cell Physiology. 2007. V. 48. P. 369–374. https://doi.org/10.1093/pcp/pcl064
  8. Koo S.C., Yoon H.W., Kim C.Y., Moon B.C., Che- ong Y.H., Han H.J. et al. // Biochem. Biophys . Res. Communs. 2007. V. 360. P. 188–193. https://doi.org/ 10.1016/j.bbrc.2007.06.052
  9. Lin W.Y., Matsuoka D., Sasayama D., Nanmori T. // Plant Science. 2010. V. 178. P. 245 –250. https://doi.org/10.1016/j.plantsci.2010.01.006
  10. Xiong L.Z., Yang Y.N. // Plant Cell. 2003. V. 15. P. 745–759. https://doi.org/10.1105/tpc.008714
  11. Castells E., Puigdomènech P., Casacuberta J.M. // Plant Mol. Biol. 2006. V. 61. P. 747 –756. https://doi.org/10.1007/s11103-006-0046-3
  12. Harper J.F., Breton G., Harmon A. // Annu. Rev. Plant Biol. 2004. V. 55. P. 263–288. https://doi.org/10.1146/annurev.arplant.55.031903. 141627
  13. Dekomah S.D., Bi Z., Dormatey R., Wang Y., Hai- der F.U., Sun C., Yao P., Bai J. // Frontiers in Genetics. 2022. V. 13. P. 996203. https://doi.org/10.3389/fgene.2022.996203
  14. Roberts D.M., Harmon A.C. // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992. V. 43. P. 375–414. https://doi.org/10.1146/annurev.pp.43.060192.002111
  15. Klimecka M., Muszyńska G. // Acta Biochimica Polonica. 2007. V. 54. P. 219–233. https://doi.org/10.18388/abp.2007_3242
  16. Harper J.F., Huang J.F., Lloyd S.J. // Biochemistry. 1994. V. 33. P. 7267–7277. https://doi.org/10.1021/bi00189a031
  17. Kohler B., Blatt M.R. // Plant Journal. 2002. V. 32 . P. 185–194. https://doi.org/10.1046/j.1365-313x.2002.01414.x
  18. Kobayashi M., Ohura I., Kawakita K., Yokota N., Fujiwara M., Shimamoto K., Doke N., Yoshioka H. // Plant Cell. 2007. V. 19. P. 1065–1080. https://doi.org/10.1105/tpc.106.048884
  19. Matschi S., Werner S., Schulze W.X., Legen J., Hil- ger H.H., Romeis T. // Plant Journal. 2013. V. 73. P. 883–896. https://doi.org/10.1111/tpj.12090
  20. Wang C.T., Song W. // Acta Physiol. Plant. 2013. V. 35. P. 1659– 1666. https://doi.org/10.1007/s11738-012-1208-3
  21. Cheng S.H., Willmann M.R., Chen H.C., Sheen J. // Plant Physiol. 2002. V. 129 . P. 469–485. https://doi.org/10.1104/pp.005645
  22. Asano T., Tanaka N., Yang G., Hayashi N., Komatsu S. // Plant Cell Physiol. 2005. V. 46. P. 356–366. https://doi.org/10.1093/pcp/pci035
  23. Ray S., Agarwal P., Arora R., Kapoor S., Tyagi A.K. // Mol. Genet. Genomics. 2007. V. 278. P. 493–505. https://doi.org/10.1007/s00438-007-0267-4
  24. Nishiyama R., Mizuno H., Okada S., Yamaguchi T., Takenaka M., Fukuzawa H., Ohyama K. // Plant Cell Physiol. 1999. V. 40. P. 205–212. https://doi.org/10.1093/oxfordjournals.pcp.a029529
  25. Kawasaki T., Okumura S., Kishimoto N., Shimada H., Higo K., Ichikawa N. // Plant J ournal. 1999. V. 18. P. 625–632. https://doi.org/10.1046/j.1365-313x.1999.00493. x
  26. Dubrovina A.S., Kiselev K.V., Veselova M. V., Isaeva G.A., Fedoreyev S.A., Zhuravlev Y.N. // J. Plant Physiol. 2009. V. 166. P. 1194–1206. https://doi.org/10.1016/j.jplph.2009.01.006
  27. Dubrovina A.S., Aleynova O .A., Kiselev K.V., Noviko- va G.V. // Acta Physiologiae Plantarum. 2014. V. 36. P. 1727–1737 . https://doi.org/10.1007/s11738-014-1547-3
  28. Dubrovina A.S., Kiselev K.V., Khristenko V.S., Aleyno- va O.A. // Plant Cell, Tissue and Organ Culture. 2016. V. 124. P. 137–150. https://doi.org/10.1007/s11240-015-0882-4
  29. Aleynova O.A., Dubrovina A.S., Suprun A.R., Ogne-va Z.V., Kiselev K.V. // Plant Cell, Tiss. Org. Culture. 2024. V. 159. P. 77. https://doi.org/10.1007/s11240-024-02931-1
  30. Dubrovina A.S., Kiselev K.V. // Russian Journal of Genetics. 2019. V. 55. P. 319–329. https://doi.org/10.1134/S1022795419030049
  31. Kiselev K.V., Ogneva Z. V., Aleynova O.A., Suprun A.R., Ananev A.A., Nityagovsky N.N., Dubrovina A. S. // Horticulturae. 2023. V. 9. P. 513. https://doi.org/10.3390/horticulturae9040513
  32. Livak K.J.; Schmittgen T.D. // Methods. 2001. V. 25. P. 402–408. https://doi.org/10.1006/meth.2001.1262
  33. Tzfira T., Tian G.W., Lacroix B., Vyas S., Li J., Leitner-Dagan Y. et al. // Plant Mol. Biol . 2005. V. 57. P. 503–516. https://doi.org/10.1007/s11103-005-0340-5
  34. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H. et al. // Bioinforma-tics. 2007. V. 23. P. 2947–2948. https://doi.org/10.1093/bioinformatics/btm404

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).