Glycation of leghemoglobin by methylglyoxal in comparison with other hemoglobins and influence on their peroxidase activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Non-enzymatic glycation is an irreversible posttranslational pro tein modification, which leads to a violation of physico-chemical properties and functions. Glycation most often affects lysine and arginine residues. Since hemoglobins contain many lysine residues (average 9%), they are often target s for glycating agents glyoxal and methylglyoxal (MG). A comparative study of the susceptibility for glycation of leghemoglobin (Lb) from bean nodules (Vicia faba L.), myoglobins (Mb) from sperm whale muscles and horse heart, and hemoglobins (Hb) from bovine and human erythrocytes was carried out. The level of glycation was defined by the autofluorescence of protein-bound advanced glycation end products (AGEs). The glycation level of Lb was 2.5 times higher than of sperm whale Mb and human Hb and 5 times higher than of horse Mb and bovine Hb. Lb glycation level depended on the presence of oxygen in the medium. Under microaerobic conditions, amount of AGEs formed was 3 times lower than in oxygen-containing environment, and the degradation of heme group was also slower. Glycation also affected the peroxidase activity of hemoproteins. Initial rate of Lb peroxidase reaction was 6 times higher than of myoglobins and 10–13 times higher than of hemoglobins. Glycation decreased the rate of Lb and hemoglobins peroxidase reaction, while for myoglobins it did not change or increased depending on incubation time with MG.

About the authors

E. I. Nasybullina

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, 119071 Russia

O. V. Kosmachevskaya

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, 119071 Russia

A. F. Topunov

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: aftopunov@yandex.ru
Moscow, 119071 Russia

References

  1. Nigro C., Leone A., Fiory F., Prevenzano I., Nicolò A., Mirra P. et al. // Cells. 2019. V. 8. № 7. e749. https://doi.org/10. 3390/cells8070749
  2. De la Maza M.P., Garrido F., Escalante N., Leiva L., Barrera G., Schnitzler S. et al. // Journal of Diabetes Mellitus . 2012. V. 2. № 2. P. 221 – 226.
  3. Banerjee S., Chakraborti A.S. // Int. J. Biol. Macromol. 2017. V. 95. P. 1159 – 1168.
  4. Reddy V.P., Aryal P., Darkwah E.K. // Microorga-nisms. 2022. V. 10. № 9. e1848. https://doi.org/10.3390/microorganisms10091848
  5. Nakamura A., Kawaharada R. // Fundamentals of Glycosylation. London, UK: IntechOpen, 2022. e97234. https://doi.org/10. 5772/intechopen.97234
  6. Mukunda D.C., Joshi V.K., Chandra S., Siddara- maiah M., Rodrigues J., Gadag S. et al. // Int. J. Biol. Macromol. 2022. V. 213. P. 279–296.
  7. Uceda A.B., Mariño L., Casasnovas R., Adrover M. // Biophys. Rev. 2024. V. 16. № 2. P. 189 – 218.
  8. Bhat L.R., Vedantham S., Krishnan U.M., Rayappan J.B.B. // Biosens. Bioelectron. 2019. V . 133. P . 107–124.
  9. Thornalley P.J. // Ann. N.Y. Acad. Sci. 2005. V. 1043. P. 111 – 117.
  10. Kosmachevskaya O.V., Shumaev K.B., Topunov A.F . // Appl. Biochem . Microbiol. 2017. V. 53. № 3. P. 273 – 289.
  11. Kosmachevskaya O.V., Novikova N.N., Topunov A.F. // Antioxidants. 2021. V. 10. № 2. e253. https://doi.org/10.3390/antiox10020253
  12. Stratmann B. // Int. J. Mol. Sci. 2022. V. 23. № 11. e6186. https://doi.org/10.3390/ijms23116186
  13. Trujillo M.N., Galligan J.J. // Nat. Chem. Biol. 2023. V. 19. № 8. P. 922 – 927.
  14. Kosmachevskaya O.V., Nasybullina E.I., Topunov A.F. // Appl. Biochem. Microbiol. 2022. V. 58. № 1. P. 44 – 52.
  15. Лебедева О.В., Угарова Н .Н., Березин И.В. // Биохимия. 1977. Т. 42. № 8. С. 1372–1379.
  16. Kosmachevskaya O.V., Topunov A.F. // Appl. Biochem . Microbiol . 2010. V . 46. № 3. P . 297–302.
  17. Yim M.B., Yim H.S., Lee C., Kang S.O., Chock P.B. // Ann. N. Y . Acad. Sci. 2001. V. 928. № 1. P. 48–53.
  18. Shumaev K.B., Kosmachevskaya O.V., Nasybullina E.I., Ruuge E.K., Topunov A.F. // Int. J. Mol. Sci. 2023. V. 24. № 1. e168. https://doi.org/10. 3390/ijms24010168
  19. Khoo U., Newman D.J., Miller W.K., Pricel C.P. // Eur. J. Clin. Chem. Clin. Biochem. 1994. V. 32. Р . 435–440.
  20. Roy A., Sen S., Chakraborti A.S. // Free Radic. Res. 2004. V. 38. № 2. P. 139 – 146.
  21. Sen S., Bose T., Roy A., Chakraborti A.S. // Mol. Cell Biochem. 2007. V. 301. № 1 – 2. P. 251 – 257.
  22. Ghosh P., Sen S., Bose U.B., Mandal S., Biswas I.B., Biswas U.K., Saha P. // Baghdad Journal of Biochemistry and Applied Biological Sciences. 2023. V. 4. № 1. P. 17 – 26.
  23. Pohanka M. // Biosensors (Basel). 2021. V. 11. № 3. e70. https://doi.org/10.3390/bios11030070
  24. Rabbani N., Thornalley P.J. // Amino Acids. 2012. V. 42. P. 1087 – 1096.
  25. Thornalley P.J. // Drug. Metabol. Drug. Interact. 2008. V. 23. P. 125 – 150.
  26. Gao Y., Wang Y. // Biochemistry. 2006. V. 45. № 51. P. 15654 – 15660.
  27. Bose T., Bhattacherjee A., Banerjee S., Chakrabor- ti A.S. // Arch. Biochem . Biophys. 2013. V. 529. № 2. P. 99 – 104.
  28. Chen H.J., Chen Y.C., Hsiao C.F., Chen P.F. // Chem. Res. Toxicol. 2015. V. 28. № 12. P. 2377 – 2389.
  29. Friess U. // Clinical Chemistry. 2003. V. 49. № 8. P. 1412–1415.
  30. Banerjee S., Chakraborti A.S. // Protein J. 2013. V. 32. № 3. P. 216 – 222.
  31. Banerjee S., Maity S., Chakraborti A.S. // Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2016. V. 155. P. 1–10.
  32. Banerjee S. // Int. J. Biol. Macromol. 2021. V. 193. Part B. P. 2165–2172.
  33. Banerjee S. // Vitam Horm. 2024. V. 125. P. 31 –46.
  34. Raupbach J., Ott C., Koenig J., Grune T. // Free Rad. Biol. Med . 2022. V. 152. P. 516 – 524.
  35. Ahmad N.N., Kamarudin N.H.A., Leow A.T.C., Abd. Rahman R.N.Z.R. // Molecules. 2020. V. 25. № 17. e3858. https://doi.org/10.3390/molecules25173858
  36. Li S., Zheng Y., Xu P., Zhu X., Zhou C. // Food Chem. 2018. V . 242. P . 22–28.
  37. Isogai Y ., Imamura H., Nakae S ., Sumi T ., Takaha- shi K ., Shirai T . // iScience . 2021. V . 24. № 8 . e 102920. https://doi.org/10.1016/j.isci.2021.102920
  38. Davies M.J., Mathieu C., Puppo A. // Adv. Inorg. Chem. 1999. V. 46. P. 495 – 542.
  39. Thornalley P.J., Rabbani N. // Semin. Dial. 2009. V. 22. № 4. P. 400–404.
  40. Matamoros M.A., Kim A., Peñuelas M., Ihling C., Griesser E., Hoffmann R. et al. // Plant Physiol . 2018. V. 177. P. 1510–1528.
  41. Kosmachevskaya O.V., Topunov A.F. // Appl. Biochem . Microbiol . 2009. V . 45. № 6. P . 563–587.
  42. Elbaum D., Nagel R.L. // J. Biol. Chem. 1981. V. 256. № 5. P. 2280–2283.
  43. Alayash A.I., Wilson M.T. // Front. Mol. Biosci. 2022. V. 9. e910795. https://doi.org/10. 3389/fmolb.2022.910795
  44. Keilin D., Hartree E.F. // Nature. 1950. V. 166. № 4221. P. 513–514.
  45. Sievers G., Rönnberg M. // Biochim. Biophys Acta. 1978. V. 533. № 2. P. 293 – 301.
  46. Sirangelo I., Iannuzzi C. // Int. J. Mol. Sci. 2021. V. 22. № 12. e6609. https://doi.org/10.3390/ijms22126609
  47. Iram A., Alam T., Khan J.M., Khan T.A., Khan R.H., Naeem A. // PLoS One. 2013. V. 8. № 8. e72075. https://doi.org/10.1371/journal.pone.0072075
  48. Esackimuthu P., Saraswathi N.T. // Biochem . Biophys. Res. Commun. 2021. V. 534. P. 387 – 394.
  49. Nascimento A.L.A., Guimarães A.S., Rocha T.D.S, Goulart M.O.F., Xavier J.A., Santos J.C.C. // Vitam. Horm. 2024. V. 125. P. 183 –229.
  50. Lee J.H., Samsuzzaman M., Park M.G., Park S.J., Kim S.Y. // Int. J. Biol. Macromol . 2021. V. 187. P. 409–421.
  51. Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Topunov A.F. // Molecules. 2021. V. 26. № 23. e7207. https://doi.org/10. 3390/molecules26237207

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).