Green strategy for bioleaching of difficult neodymium compounds by microscopic fungi

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Currently, environmentally friendly processes for processing raw materials containing rare earth elements (REE) are being actively developed. Microorganisms play an important role in the biogeochemistry of REE, but the nature of the interaction of micromycetes with REE remains poorly understood. The study examines the potential of extracting REES from their insoluble forms using microscopic fungi. Using the example of the soil micromycete Aspergillus niger , the possibility of converting difficult-to-dissolve neodymium oxide Nd2O3 into water- and alcohol-soluble (ethyl and isopropyl) neodymium compounds is shown. The morpholog y and structure of A. niger cells and the distribution of insoluble and soluble forms of the rare earth element before and after bio-leaching were studied using scanning electron microscopy (SEM). Bio-leaching by micromycetes was modeled using the direct contact method. X-ray fluorescence analysis of extracts after bio-leaching showed the presence of neodymium. These studies will help unlock the potential of microscopic fungi for their application in an environmentally friendly technology for the extraction of REE based on bio-leaching. This may serve as a basis for the development of an environmentally friendly alternative to currently used methods using strong inorganic acids or toxic substances.

About the authors

D. V. Belov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: bdv@ipfran.ru
Nizhny Novgorod, 603950 Russia

S. N. Belyaev

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: bdv@ipfran.ru
Nizhny Novgorod, 603950 Russia

E. N. Razov

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences – branch of the Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: bdv@ipfran.ru
Nizhny Novgorod, 603024 Russia

N. A. Sorokoletova

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; National Research Lobachevsky State University of Nizhny Novgorod

Email: bdv@ipfran.ru
Nizhny Novgorod, 603950 Russia; Nizhny Novgorod, 603022 Russia

E. I. Serebrov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; National Research Lobachevsky State University of Nizhny Novgorod

Email: bdv@ipfran.ru
Nizhny Novgorod, 603950 Russia; Nizhny Novgorod, 603022 Russia

P. V. Mosyagin

National Research Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: bdv@ipfran.ru
Nizhny Novgorod, 603022 Russia

References

  1. Forti V., Balde C. P., Kuehr R., Bel G . The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential. UNU/UNITAR SCYCLE, ITU, 2020. 120 p.
  2. Liu K., Tan Q., Yu J. , Yu J ., Wanget M. // Circular Economy. 2023. V. 2. № 1. 100028. https://doi.org/10.1016/j.cec.2023.100028
  3. Santhiya D., Ting Y.P. // J. Biotechnol. 2005. V. 116. № 2. P. 171. https://doi.org/10.1016/j.jbiotec.2004.10.011
  4. Aung K.M.M., Ting Y.P. // J. Biotechnol. 2005. V. 116. № 2. P. 159. https://doi.org/10.1016/j.jbiotec.2004.10.008
  5. Santhiya D., Ting Y.P. // J. Biotechnol. 2006. V. 121. № 1. P. 62. https://doi.org/10.1016/j.jbiotec.2005.07.002
  6. Pathak A., Kothari R., Vinoba M., Habibi N., Tyagi V.V. // JEM. 2021. V. 280. P. 111789. https://doi.org/10.1016/j.jenvman.2020.111789
  7. Dusengemungu L., Kasali G., Gwanama C., Mubem- ba B. // Environ. Adv. 2021. V. 5. P. 100083. https://doi.org/10.1016/j.envadv.2021.100083
  8. Rasoulnia P., Mousavi S.M. // Bioresour. Technol. 2016. V. 216. P. 729. https://doi.org/10.1016/j.biortech.2016.05.114
  9. Bindschedler S., Bouquet T.Q.T.V., Job D., Edith J., Junier P. // Adv. Appl. Microbiol. 2017. V. 99. P. 53. https://doi.org/10.1016/bs.aambs.2017.02.002
  10. Burgstaller W., Schinner F. // J. Biotech. 1993. V. 27. № 2. P. 91. https://doi.org/10.1016/0168-1656(93)90101-R
  11. Wu H.Y., Ting Y.P. // Enzyme Microb. Technol. 2006. V. 38. № 6. P. 839. https://doi.org/10.1016/j.enzmictec.2005.08.012
  12. Mouna H.M., Baral S.S. // Hydrometallurgy. 2019. V. 184. P. 175. https://doi.org/10.1016/j.hydromet.2019.01.007
  13. Li J., Xiao Y., Feng X., Wang J., Ma Z., Yao R. et al. // J. Clean. Prod. 2024. V. 468. P. 143067. https://doi.org/10.1016/j.jclepro.2024.143067
  14. Hosseinzadeh F., Rastegar S.O., Ashengroph M. // Process Biochem. 2021. V. 105. P. 1. https://doi.org/10.1016/j.procbio.2021.03.022
  15. Ma J., Li S., Wang J., Jiang S. , Panchal B., Sun Y. // Fuel. 2023. V. 354. P. 129387. https://doi.org/10.1016/j.fuel.2023.129387
  16. Keekan K.K., Jalondhara J.C. // Int. J. 2017. V. 38. № 5. P. 312. https://doi.org/10.1080/08827508.2017.1350956
  17. Castro L., Blázquez M.L., González F., Muñ oz J.A. // Metals. 2020. V. 10. № 7. P. 978. https://doi.org/10.3390/met10070978
  18. Kang X., Csetenyi L., Gadd G.M. // Environ. Microbiol. 2021. V. 23. № 7. P. 3970. https://doi.org/10.1111/1462-2920.15402
  19. Osman Y., Gebreil A., Mowafy A.M., Anan T .I., Ha- med S.M. // World J. Microbiol. Biotechnol. 2019. V. 35. https://doi.org/10.1007/s11274-019-2666-1
  20. Никитин Д.А., Семенов М.В. // Микробиология. 2022. T. 91. № 1. https://doi.org/110.31857/S0026365622010098
  21. Билай В.И., Коваль Э .З. Аспергиллы. Определитель. Киев: Наукова Думка, 1988. 203 с.
  22. Саттон Д. Определитель патогенных и условно-патогенных грибов. М .: Мир, 2001. 486 с.
  23. Siddiquee S., Kobun R., Al Azad S., Saallah S. // JMBT. 2015. V. 7. № 6. https://doi.org/10.4172/1948-5948.1000243
  24. Remacle J. The cell wall and metal binding. Biosorption of heavy metals / Ed. B. Volesky. USA, Florida: CRC Press, Boca Raton, 1990. P. 83–92.
  25. Gow N.A.R., Latge J.P., Munro C.A. // Microbiol. Spectr. 2017. V. 5. № 3. https://doi.org/10.1128/microbiolspec.funk-0035-2016
  26. Горовой Л.Ф., Косяков В.Н . // Биополимеры и клетка. 1996. Т . 12. № 4. С . 49.
  27. Скугорева С.Г., Кантор Г.Я., Домрачева Л.И. // Теоретические проблемы экологии. 2019. № 2. С. 14. https://doi.org/10.25750/1995-4301-2019-2-014-031
  28. Naja G., Mustin C., Volesky B., Berthelin J. // Water Res. 2005. V. 39. № 4. https://doi.org/10.1016/j.watres.2004.11.008
  29. Priyadarshini E., Priyadarshini S.S., Cousins B.G., Pradhan N. // Chemosphere. 2021. V. 274. https://doi.org/10.1016/j.chemosphere.2021.129976
  30. Vo P.H.N., Danaee S., Nam Hai H.T., Lai N.H., Tuan A.H.N., Hong T.M. N. et al. // Sci. Total Environ. 2024. V. 908. https://doi.org/10.1016/j.scitotenv.2023.168210
  31. Veglio F., Beolchini F. // Hydrometallurgy. 1997. V. 44. № 3. P. 301. https://doi.org/10.1016/S0304-386X(96)00059-X
  32. Nawrocki P.R., Sørensen T.J. // Phys. Chem. Chem. Phys. 2023. V. 25. P. 19300. https://doi.org/10.1039/D3CP02033A
  33. Zschornack G.H. Handbook of X-ray Data. / Springer Science & Business Media, 2007. 969 p.
  34. Willis J.P., Feather C.E., Turner K. Guidelines for XRF Analysis. V. 1. Cape Town, South Africa: James Willis Consultants, 2014. P. 544.
  35. Halliwell G. // Nature. 1952. V. 169. P. 1063. https://doi.org/10.1038/1691063a0
  36. Zhang J., Zhang X., Su X., Du H., Lu Y., Zhang Q. // Molecules. 2024. V. 29. № 6. P. 1266. https://doi.org/10.3390/molecules29061266
  37. Hameed I.H., Hamza L.F., Kamal S.A. // J. Pharmacognosy Phytother. 2015. V. 7. № 8. P. 132. https://doi.org/10.5897/JPP2015.0354
  38. Gł owiak T., Legendziewicz J., Dao C.N., Huskow- ska E. // J. Less-Common Met. 1987. V. 134. № 2. P. 153. https://doi.org/10.1016/0022-5088(87)90553-4
  39. Elango D., Manikandan V., Jayanthi P., Velmurugan P., Balamuralikrishnan B., Ravi A.V. et al. // Curr. Plant Biol. 2020. V. 23. https://doi.org/10.1016/j.cpb.2020.100153
  40. Songa X., Liao Y., Liu T., Yin D ., Wang H., Chenet L. et al . // SSRN. 2022. https://doi.org/10.2139/ssrn.4088651
  41. Han T., Kim G.B., Lee S.Y. // PNAS. 2020. V. 117. № 48. P. 17483. https://doi.org/10.1073/pnas.2017483117
  42. Liberal Â., Sandrina R., Heleno A., Martins A. // Natural Secondary Metabolites. 2023. (Chapter). P. 475. https://doi.org/10.1007/978-3-031-18587-8_14
  43. Lykholat Y.V., Khromykh N.O., Didur O.O., Dreh- val O.A., Sklyar T.V., Anishchenko A.O. // Beni-Suef University Journal of Basic and Applied Sciences. 2021. V. 10. https://doi.org/10.1186/s43088-021-00171-2
  44. Li J., Chroumpi T., Garrigues S., Kun R.S., Meng J., Salazar-Cerezo S. et al. // J. Fungi (Basel). 2022. V. 8. № 12. P. 1315. https://doi.org/10.3390/jof8121315
  45. Feng S., Pan L., Li Q., Zhang Y., Mou F., Liu Z. et al. // Int. J. Mol. Sci. 2023. V. 24. 17611. https://doi.org/10.3390/ijms242417611
  46. Liu W., Xiang H., Zhang T., Pang X., Su J., Liu H. et al. // ACS Omega. 2021. V. 6. P. 9537. https://doi.org/10.1021/acsomega.1c00010
  47. Chattopadhyay P., Banerjee S.K., Sen K., Chakrabar- ti P. // Can. J. Microbiol. 1985. V. 31. № 4. Р . 352 –35 5. https://doi.org/10.1139/m85-067
  48. Wadman M.W., Vries R.P., Kalkhove S., Veldink G.A., Vliegenthart J.F. G. et al. // BMC. Microbiol. 2009. V. 23. № 9. https://doi.org/10.1186/1471-2180-9-59
  49. Wiese J., Imhoff J.F., Gulder T.A.M. , Labes A., Schmaljohann R. // Mar. Drugs. 2016. V. 14. https://doi.org/10.3390/md14110200
  50. Yu R., Liu J., Wang Y., Wang H., Zhang H. // Front. Chem. 2021. V. 30. № 9. https://doi.org/10.3389/fchem.2021.701022
  51. Das N., Das D. // J. Rare Earths. 2013. V. 31. № 10. P. 933. https://doi.org/10.1016/S1002-0721(13)60009-5
  52. Zhou H., Wang J., Shao S., Yu X., Kang J., Qiu G. et al. // J. Water Proc. Engineering. 2024. V. 59. P. 104965. https://doi.org/10.1016/j.jwpe.2024.104965
  53. Huskowska E., Legendziewicz J., Hanuza J. // Polyhedron. 1990. V. 9. № 5. P. 59–664. https://doi.org/10.1016/S0277-5387(00)80272-7
  54. Badertscher M., Bühlmann P., Pretsch E. Structure Determination of Organic Compounds. Tables of Spectral Data. 2009. 10.1007/978-3-540-93810-1' target='_blank'>https://doi: 10.1007/978-3-540-93810-1
  55. Böszörményi É., Dömötör O., Kutus B., Varga G., Peintler G., Sipos . P. // J. Mol. Struct . 2022. V . 1261. P . 132894. https :// doi . org /10.1016/ j . molstruc .2022.132894

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).