EFFECT OF NARINGENIN ON THE GROWTH OF PLANKTONIC CULTURE AND BIOFILMS AS WELL AS THE CAMP LEVEL AND PECTINASE ACTIVITY OF PSEUDOMONAS SYRINGAE PV. PISI AND RHYZOBIUM LEGUMINOSARUM BV. VICIAE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this study was to investigate the effect of naringenin on the growth dynamics of planktonic culture, biofilm density, as well as the concentration of cAMP and pectinase activity of P. syringaei and R. leguminosarum. The studies showed that naringenin did not affect the growth dynamics of the planktonic culture of P. syringaei, but the titer of the R. leguminasarum culture decreased at 1 nM naringenin. 500 pM naringenin suppressed the density of P. syringae biofilms and stimulated it in rhizobia. The cAMP level under the influence of both naringenin concentrations increased to varying degrees both in planktonic and biofilms in both cultures. Naringenin completely suppressed pectinase activity in P. syringaei biofilms, but stimulated it in R. leguminasarum . Thus, naringenin can be considered as an exogenous promising regulator for practical application in the fight against Pseudomonas syringae pv. pisi.

About the authors

L. A. Lomovatskaya

Siberian Institute of Plant Physiology and Biochemistry (SIPPB SB RAS)

Email: LidaL@sifibr.irk.ru
Irkutsk, 664033 Russia

A. M. Goncharova

Siberian Institute of Plant Physiology and Biochemistry (SIPPB SB RAS)

Author for correspondence.
Email: LidaL@sifibr.irk.ru
Irkutsk, 664033 Russia

References

  1. Steinauer K ., Thakur M . P ., Hannula S . E ., Weinhold A ., Uthe A ., van Dam N . M ., Bezemer T . M . // Plant Cell Environ . 2023. V. 46. P. 1885–1899. https://doi.org/10.1111/pce.14570
  2. Ali S., Glick B.R. // Impacting Plant Biocontrol Crowth. Crops. 2024. V. 4. P . 43–54. https://doi.org/10.3390/crops4010004
  3. Ломоватская Л.А., Макарова Л.Е., Кузакова О.В., Романенко А.С., Гончарова А.М. // Прикладная биохимия и микробиология. 2016. Т . 52. № 3. С . 287–292. https://doi.org/10.1134/S0003683816030108
  4. Dennis M.W., Karoney O., Muge E., Nyaboga E. N., Baraza D.L., Shibairo S.I., Naluyange V . // Front. Sustain. Food Systems. 2021. V. 4. Article 604396. https://doi.org/10.3389/fsufs.2020.604396
  5. Siczek A., Frą c M., Nawrocka A., Wielbo J., Kidaj D. // Acta Agriculturae Scandinavica, Section B—Soil & Plant Science. 2015. V. 65. №. 2. P. 125–131. http://dx.doi.org/10.1080/09064710.2014.975835
  6. Vikram A., Jayaprakasha G.K. , Jesudhasan P.R., Pil- lai S.D. , Patil B.S. // Internet J. Food Microbiol. 2010. V. 15. P. 109–116. https://doi.org/ 10.1111/j.1365-2672.2010.04677.x
  7. Hernando-Amado S., Alcalde-Rico M., Gil-Gil T., José R., Valverde J.R., Martínez J.L. // Front. Mol. Bios . 2020. V. 7. Article 25. https://doi.org/10.3389/fmolb.2020.00025
  8. Zhang Y ., Wang J.-F., Dong J., Wei J.-Y., Wang Y.-N., Dai X. -H. et al. // Fitoterapia. 2013. V. 86. 92–99. https:// doi.org/10.1016/j.fitote.2013.02.001
  9. Smith R.S., Wolfgang M.C., Lory S . // Infect. Immun. 2004. V. 72. № 3. P. 677– 1684. https://doi.org/10.1128/IAI.72.3.1677-1684.2004
  10. Lomovatskaya L.A., Romanenko A.S., Filinova N.V., Dudareva L.V. // Plant Cell Reports. 2011. V. 30. № 1. P. 125–132. https://doi: 10.1007/s00299-010-0950-5.
  11. Bradford M.M. // Anal. Biochem. 1976. V . 72. P . 248–254.
  12. Вешняков В.А., Хабаров Ю.Г., Камакина Н.Д . // Химия растительного сырья. 2008. Т . 6. № 4. С . 47–50.
  13. Kerby D.S. // Comprehens. Psychol. 2014. V. 3 . 11.I T. 3.1. https://doi.org/10.2466/11.IT.3.1
  14. Pantigoso H.A. , Newberger D., Vivanco J.M. // J. Appl. Microb. 2022 . V. 133. № 5. P. 2864–2876. https://doi: 10.1111/jam.15686
  15. Nouwen N., Gargani D., Giraud E. // Molecular Plant-Microbe Interactions. 2019. V . 32. №. 11. P . 1517–1525. https :// doi . org /10.1094/ MPMI -05-19-0133- R 16
  16. Макарова Л.Е., Дударева Л.В., Петрова И.Г., Васильева Г. Г. // Прикл. биохимия и микробиология. 2016. Т . 52. № 2. С . 205–213. https://doi.org/10.7868/S0555109916020094
  17. Tsvetkova G., Teofilova T., Georgiev G. I. // General Appl. Plant Physiol. 2006. V. 1. P. 67–71.
  18. Novak K., Chovanec P., Škrdleta V., Kropáčová M., Lisá L. , Němcová M. et al. // 2002. V. 375. P. 1735–1745. https://doi.org/10.1093/jxb/erf016
  19. Szoboszlay M., White-Monsant A., Moe L.A. // PLoS One. 2016. V. 11. № 1. Р . e 0146555. https://doi.org/10.1371/journal. pone.0146555
  20. Mir D.H., Rather M.A. // Appl.Biochem. Microbiol. 2024. V. 60. № 2. P. 264–279. https://doi.org /10.1134/S000368382402011
  21. Kalia D., Merey G., Nakayama S., Zheng Y., Zhou J., Luo Y. // Chem. Coc. Rev. 2013. V. 42. № 1. P. 305–341. https://doi.org/10.1039/c2cs35206k
  22. Meneses N., Taboada H., Dunn M.F., Vargas M. C., Buchs N., Heller M., Encarnación S. // Archiv. Microbiol. 2017. V. 199. Р . 737–755. https://doi.org/10.1007/s00203-017-1351-8
  23. Ono K., Oka R., Toyofuku M., Sakaguchi A., Hama-da M., Yoshida S., Nomura N. // Microbes Environ. 2014. V. 29. P. 104–106. https://doi.org/10.1264/jsme2.me13151
  24. Kalivoda E., Brothers K., Stella M., Schmitt M., Shanks R. // PLoS One. 2013. V. 8. № 7. P. 1–11. https://doi.org/10.1371/journal.pone.0071267
  25. Liu C., Sun D., Zhu J., Jiawen Liu J., Liu W. // Front. Microb. 2020. V. 11. Article 802. https://doi.org/10.3389/fmicb.2020.00802
  26. Green J., Stapleton M.R., Smith L.J., Artymiuk P.J., Kahramanoglou C., Hunt D.M., Buxton R.S. // Microbiol. 2014. V. 18. P. 1–7. https ://doi: 10.1016/j.mib.2014.01.003
  27. Recourt K., Van Brussel A. A., Driessen A.J., Lugten-berg B.J. // J. Bacteriol. 1989. V . 171. P . 4370–4374. https :// doi . org /10.1128/ jb .171.8.4370-4377.1989
  28. Гончарова А.М., Ломоватская Л.А., Романен- ко А.С. // Прикл. биохимия и микробиология. 2023. Т . 59. № 3. С . 344–348. https://doi.org/10.1134/S0003683823030079
  29. West S .E., Sample A.K., Runyen-Janecky L. // J. Bacteriol. 1994. V. 176. № 24. P. 7532–7542. https://doi.org/10.1128/jb.176.24.7532-7542.1994
  30. Zhan L., Han Y., Yang L., Geng J., Li Y., Gao H. // Infect. Immun. 2008. V. 76. № 11. P. 5028–5037. https://doi.org/10.1128/iai.00370-08
  31. Lathem W.W., Schroeder J .A., Bellows L.E., Ritzert J.T., Koo J.T ., Price P.A. // mBio J. 2014. V. 5. № 1. e01038– е 01013. https://doi.org/10.1128/mBio.01038-13
  32. Ogura K., Matsui H., Yamamoto M., Noutoshi M., Toyoda K., Fumiko T., Ichinose Y. // Biochem. Biophys. Report. 2021. V. 26. 100944. https://doi.org /10.1016/j.bbrep.2021.100944
  33. Taguthi F., Ichinose Y. // Mol. Plant Pathol . 2013. V. 14. № 3. P. 279–292. https://doi.org/10.1111/mpp.12003
  34. Crabill E., Joe A., Block A., van Rooyen J., Alfano J. // Plant Physiol. 2010. V. 154 . № 1. P. 233–244. https://doi.org/10.1104/pp.110.159723
  35. Magro P. , Varvaro L., Chilosi G., Avanzo C., Balestra G.M. // FEMS Microbiol. Letters. 1994. V. 117. № 1. P. 1–5. https:// doi.org/10.1111/j.1574-6968.1994.tb06733.x
  36. Ломоватская Л . А ., Романенко А . С ., Рыкун О . В . // Микробиол . 2015. Т . 84. № 4. С . 473–476. https://doi.org/10.1134/S 0026261715040116
  37. Nasser W., Robert-Baudouy J., Reverchon S. // Mol. Microb. 1997. V. 26. № 5. P. 1071–1082. https://doi.org /10.1046/j.1365-2958.1997.6472020.x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).