Membranotropic Property and Antibiofilm Efficacy of Novel Phosphonium Derivatives Bearing Phenolic Moiety

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New derivatives of phosphonium salts (Z)-(2-(2-hydroxy-5-chlorphenyl)-2-phenylethenyl)octyldiphenyl-phosphonium chloride (PP8) and (2-hydroxybenzyl)dodecyldiphenylphosphonium chloride (6.5) were found to cause depolarization and permeabilization of the bacterial membrane. The ability of phosphonium salts to prevent the formation of Staphylococcus aureus biofilms and to disrupt them was demonstrated. Furthermore, the results demonstrated that the substances do not cause resistance development in the S. aureus strain. Finally, compound PP8 did not demonstrate mutagenic properties in the Ames test using strains of Salmonella typhimurium TA100 and S. typhimurium TA98.

About the authors

A. P. Lyubina

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: aplyubina@gmail.com
Kazan, 420088 Russia

A. D. Voloshina

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: aplyubina@gmail.com
Kazan, 420088 Russia

S. K. Amerkhanova

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: aplyubina@gmail.com
Kazan, 420088 Russia

A. S. Sapunova

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: aplyubina@gmail.com
Kazan, 420088 Russia

D. A. Tatarinov

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: aplyubina@gmail.com
Kazan, 420088 Russia

V. F. Mironov

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: aplyubina@gmail.com
Kazan, 420088 Russia

References

  1. Laws M., Shaaban A., Rahman K. M. // FEMS Microbiol. Rev. 2019. V. 43. № 5. P. 490–516.
  2. Фролова В.В., Чернов Н.М ., Ивкин Д.Ю., Румян- цев А.М., Гурина С.В. // Журнал микробиологии, эпидемиологии и иммунобиологии. 2021. T . 98. № 5. C . 558–566.
  3. Chan S.J., Zhang K., Zhu J.Y., Bazan G. C. // Chemistry–A European Journal. 2023. V. 29. № 26. https://doi.org/10.1002/chem.202203803
  4. Nazarov P.A., Majorov K.B., Apt A.S., Skulachev M.V. // Pharmaceuticals, 2023. V. 16. № 5. https://doi.org/10.3390/ph16050688
  5. Michaud M.E., Allen R.A., Morrison-Lewis K.R., Sanchez C.A., Minbiole K.P., Post S.J., Wuest W.M. // ACS Infectious Diseases , 2022. V. 8. № 11. P. 2307 – 2314.
  6. Tatarinov D.A., Kuznetsov D.M., Voloshina A.D., Lyubina A.P., Strobykina A.S., Mukhitova F.K. et al. // Tetrahedron . 2016. V. 72. № 51. P. 8493–8501.
  7. Terekhova N.V., Lyubina A.P., Voloshina A.D., Sapunova A.S., Khayarov K.R., Islamov D.R. et al. // Bio-organic Chemistry . 2022. V. 127. https://doi.org/10.1016/j.bioorg.2022.106030
  8. Terekhova N.V., Tatarinov D.A., Shaihutdinova Z.M., Pashirova T.N., Lyubina A.P., Voloshina A.D. et al. // Bioorg.Med. Chem. Lett. 2020. V. 30. № 13. https://doi.org/10.1016/j.bmcl.2020.127234
  9. Sianglum W., Srimanote P., Wonglumsom W., Kittiniyom K., Voravuthikunchai S.P. // PLOS One . 2011. V. 6. № 2. https://doi.org/10.1371/journal.pone.0016628
  10. Song Y.J., Yu H.H., Kim Y.J., Lee N.K., Paik H.D. // J. Microbiol. Biotechnol. 2019. V. 29. № 8. P. 1177 – 1183.
  11. Плакунов В.К., Мартьянов С.В., T етенева Н.А., Журина М.В. // Микробиология. 2016. T . 85. № 4. C . 484–489.
  12. Te Winkel J.D., Gray D.A., Seistrup K.H., Hamoen L.W., Strahl H. // Front. Cell Dev. Biol . 2016. V. 13. № 4. https://doi.org/10.3389/fcell.2016.00029
  13. Maron D.M., Ames B.N. // Mutation Research/Environmental Mutagenesis and Related Subjects . 1983. V. 113. № 3 – 4. P. 173 – 215.
  14. Halder S., Yadav K.K., Sarkar R., Mukherjee S., Saha P., Haldar S. et al. // Springer Plus . 2015. V. 4. https://doi.org/10.1186/s40064-015-1476-7
  15. Lin S., Koh J., Aung T.T., Ling W., Sin W., Lim F. et al . // J. Med. Chem . 2017. V. 60. № 14. P. 6152 – 6165.
  16. Rabin N., Zheng Y., Opoku-Temeng C., Du Y., Bonsu E., Sintim H.O. // Future Med. Chem. 2015. V. 7. № 4. P. 493 – 512.
  17. Simõ es M., Pereira A.R., Simões L.C., Cagide F., Borges F . // Drug Discovery Today . 2021. V. 26. № 6. P. 1340 – 1346.
  18. Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J. et al. // Chem. Rev . 2017. V. 117. № 15. P. 10043 – 10120.
  19. Boix-Lemonche G., Lekka M., Skerlavaj B. // Antibio-tics . 2020. V. 9. № 2. https://doi.org/10.3390/antibiotics9020092
  20. Nazarov P.A., Kirsanov R.S., Denisov S.S., Khailova L.S., Karakozova M.V., Lyamzaev K.G. et al. // Biomo- lecules. 2020. V. 10. № 2. https://doi.org/10.3390/biom10020309
  21. Pavlova J.A., Khairullina Z.Z., Tereshchenkov A.G., Nazarov P.A., Lukianov D.A., Volynkina I.A . et al. // Antibiotics. 2021. V. 10. № 5. https://doi.org/10.3390/antibiotics10050489
  22. Li M., Nyantakyi S.A., Gopal P., Aziz D.B., Dick T., Go M.L. // ACS Med. Chem. Lett. 2017. V. 8. № 11. P. 1165 – 1170.
  23. Kaniecki K., De Tullio L., Greene E.C. // Nat. Rev. Genet. 2018. V. 19. № 4. https://doi.org/10.1038/nrg.2017.92

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).