Practical Successes of Laboratory Evolution

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Adaptive Laboratory Evolution (ALE) represents a novel methodology for the generation of microbial strains with desired characteristics and the production of value-added products. Additionally, ALE is employed as a means of enhancing comprehension of the genetic and/or metabolic pathways of evolution. The objective of this review is to analyze the results of studies that elucidate and demonstrate the potential of microorganisms as model objects for laboratory evolutionary experiments. These experiments are becoming increasingly prevalent in the study of adaptation, the evaluation of evolutionary dynamics, and the testing of various evolutionary hypotheses. Concurrently, ALE has demonstrated itself to be a promising and efficacious methodology, which, when employed for biotechnological applications, has already resulted in the generation of novel and useful microbial strains. It is important to note that the current successes not only demonstrate the power and versatility of this approach but also highlight a number of unanswered questions. The conclusions drawn on the basis of ALE require a cautious interpretation of the results obtained.

作者简介

Y. Dunaevsky

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: dun@belozersky.msu.ru

Belozersky Institute of Physico-Chemical Biology

俄罗斯联邦, Moscow, 119991

O. Kudryavtseva

Lomonosov Moscow State University

Email: dun@belozersky.msu.ru

Biological Faculty

俄罗斯联邦, Moscow, 119991

S. Agroskin

Lomonosov Moscow State University

Email: dun@belozersky.msu.ru

Biological Faculty

俄罗斯联邦, Moscow, 119991

A. Gasparyan

Lomonosov Moscow State University

Email: dun@belozersky.msu.ru

Biological Faculty

俄罗斯联邦, Moscow, 119991

M. Belozersky

Lomonosov Moscow State University

Email: dun@belozersky.msu.ru

Belozersky Institute of Physico-Chemical Biology

俄罗斯联邦, Moscow, 119991

参考

  1. Sandberg T.E., Salazar M.J., Weng L.L., Palsson B.O., Feist A.M. // Metab. Eng. 2019. V. 56. P. 1–16.
  2. Kumar R., Kumar P. // Front. Microbiol. 2017. V. 8. P. 450. https://doi.org/10.3389/fmicb.2017.00450
  3. Adegboye M.F., Ojuederie O.B., Talia P.M., Babalola О.О. // Biotechnol. Biofuels. 2021. V. 14. P. 5. https://doi.org/10.1186/s13068-020-01853-2
  4. Cho J.S., Kim G.B., Eun H., Moon C.W., Lee S.Y. // JACS Au 2022. V. 2. P. 1781–1799.
  5. Sanchez-Garcia L., Martín L., Mangues R., Ferrer-Miralles N., Vázquez E., Villaverde A. // Microb. Cell Fact. 2016. V. 15. P. 33. https://doi.org/10.1186/s12934-016-0437-3
  6. Martinez R.J., Liu L., Petranovic D., Nielsen J. // Curr. Opin. Biotechnol. 2012. V. 23. P. 965–971.
  7. Rai A.K., Pandey A., Sahoo D. // Trends Food Sci. Technol. 2019. V. 83. P. 129–137.
  8. Elena S.F., Lenski R.E. // Nat. Rev. 2003. V. 4. P. 457–469.
  9. Cakar Z.P., Turanli-Yildiz B., Alkim C., Yilmaz U. // FEMS Yeast Res. 2012. V. 12. P. 171–182.
  10. Dragosits M., Mattanovich D. // Microb. Cell Fact. 2013. V. 12. P. 64. https://doi.org/10.1186/1475-2859-12-64
  11. Hirasawa T, Maeda T. // Microorganisms 2022. V. 11. P. 92. https://doi.org/10.3390/microorganisms11010092
  12. LaCroix R.A., Sandberg T.E., O’Brien E.J., Utrilla J., Ebrahim A., Guzman G.I. et al. // Appl. Environ. Microbiol. 2015. V. 81. P. 17–30.
  13. Ibarra R., Edwards J., Palsson B. // Nature. 2002. V. 420. P. 186–189.
  14. Kim K., Hou C.Y., Choe D., Kang M., Cho S., Sung B.H. et al. // Metab. Eng. 2022. V. 69. P. 59–72.
  15. Fong S.S., Marciniak J.Y., Palsson B. // J. Bacteriol. 2003. V. 185. P. 6400–6408.
  16. Sánchez-Adriá I.E., Sanmartín G., Prieto J.A., Estruch F., Fortis E., Randez-Gil F. // LWT-Food Sci. Technol. 2023. V. 184. P. 114957. https://doi.org/10.1016/j.lwt.2023.114957
  17. Hong K.K., Vongsangnak W., Vemuri G.N., Nielsen J. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 12179–12184.
  18. Almeida J.R.M., Modig T., Petersson A., Hähn-Hägerdal B., Lidén G., Gorwa-Grauslund M.F. // J. Chem. Technol. Biotechnol. 2007. V. 82. P. 340–349.
  19. Mavrommati M., Papanikolaou S., Aggelis G. //Process Biochem. 2023. V. 124. P. 280–289.
  20. Tekarslan-Sahin S.H. // Fermentation 2022. V. 8. P. 372. https://doi.org/10.3390/fermentation8080372
  21. Voordeckers K., Kominek J., Das A., Espinosa-Cantú A., De Maeyer D., Arslan A. et al. // PLoS Genet. 2015. V. 11. P. e1005635. https://doi.org/10.1371/journal.pgen.1005635
  22. Krogerus K., Holmström S., Gibson. B. // Appl. Environ. Microbiol. 2018. V. 84. P. e02302-17. https://doi.org/10.1128/AEM.02302-17
  23. Ekberg J., Rautio J., Mattinen L., Vidgren V., Londesborough J., Gibson B.R. // FEMS Yeast Res. 2013. V. 13. P. 335–349.
  24. Swamy K.B.S., Zhou N. // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 2067–2077.
  25. Brickwedde A., Van den Broek M., Geertman J.A., Magalhães F., Kuijpers N.G.A., Gibson B. et al. // Front. Microbiol. 2017. V. 8. P. 1690. https://doi.org/10.3389/fmicb.2017.01690
  26. Iattici F., Catallo M., Solieri L. // Beverages 2020. V. 6. P. 3. https://doi.org/10.3390/beverages6010003
  27. Gibson B., Vidgren V., Peddinti G., Krogerus K. // J. Ind. Microbiol. Biotechnol. 2018. V. 45. P. 1103–1112.
  28. Blount Z., Borland C., Lenski R. // Proc. Natl. Acad. Sci. USA. 2008. V. 105. P. 7899–7906.
  29. Lee D.H., Palsson B. // Appl. Environ. Microbiol. 2010. V. 76. P. 4158–4168.
  30. Veeravalli K., Boyd D., Iverson B.L., Beckwith J., Georgiou G. // Nat. Chem. Biol. 2011. V. 7. P. 101–105.
  31. Dev C., Jilani S.B., Yazdani S.S. // Microb. Cell Fact. 2022. V. 21. P. 154. https://doi.org/10.1186/s12934-022-01879-1
  32. Seong W., Han G.H., Lim H.S., Baek J.I., Kim S.J., Kim D. et al. // Metab. Eng. Commun. 2020. V. 62. P. 249–259.
  33. Lee Y., Sathesh-Prabu C., Kwak G.H., Bang I., Jung H.W., Kim D., Lee S.K. // Biotechnol. J. 2022. V. 17. P. e2000416. https://doi.org/10.1002/biot.202000416
  34. Jin C., Hou W., Yao R., Zhou P., Zhang H., Bao J. // Bioresour. Technol. 2019. V. 289. P. 121623. https://doi.org/10.1016/j.biortech.2019.121623
  35. Sarkar P., Mukherjee M., Goswami G., Das D. // J. Ind. Microbiol. Biotechnol. 2020. V. 47. P. 329–341.
  36. Hemansi H., Patel A.K., Saini J.K., Singhania R.R. // Bioresour. Technol. 2022. V. 344(Pt B). P. 126247. https://doi.org/10.1016/j.biortech.2021.126247
  37. Millán C., Peña C., Flores C., Espín G., Galindo E., Castillo T. // World J. Microbiol. Biotechnol. 2020. V. 36. P. 46. https://doi.org/10.1007/s11274-020-02822-5
  38. Zhang J., Jin B., Fu J., Wang Z., Chen T. // Molecules 2022. V. 27. P. 22. https://doi.org/10.3390/molecules2709302
  39. Catrileo D., Acuña-Fontecilla A., Godoy L. //Front. Microbiol. 2020. V. 11. P. 1–13.
  40. Godara A., Kao K.C. // Microb. Cell Fact. 2021. V. 20. P. 106. https://doi.org/10.1186/s12934-021-01598-z
  41. Zhu C., You X., Wu T., Li W., Chen H., Cha Y. et al. // Green Chem. 2022. V. 24. P. 4614–4627.
  42. Klimacek M., Kirl E., Krahulec S., Longus K., Novy V., Nidetzky B. // Microb. Cell Fact. 2014. V. 13. P. 37. https://doi.org/10.1186/1475-2859-13-37
  43. Hughes B.S., Cullum A.J., Bennett A.F. // Evolution 2007. V. 61. P. 1725–1734.
  44. Kishimoto T., Iijima L., Tatsumi M., Ono N., Oyake A., Hashimoto T. et al. // PLoS Genet. 2010. V. 6. P. e1001164. https://doi.org/10.1371/journal.pgen.1001164
  45. Royce L.A., Yoon J.M., Chen Y., Rickenbach E., Shanks J.V., Jarboe L.R. // Metab. Eng. 2015. V. 29. P. 180–188.
  46. Tilloy V., Ortiz-Julien A., Dequin S. // Appl. Environ. Microbiol. 2014. V. 80. P. 2623-2632.
  47. Caspeta L., Chen Y., Ghiaci P., Feizi A., Buskov S., Hallström B.M. et al. // Science 2014. V. 346. P. 75–78.
  48. Wallace-Salinas V., Gorwa-Grauslund M.F. // Biotechnol. Biofuels 2013. V. 6. P. 151. https://doi.org/10.1186/1754-6834-6-151
  49. Horinouchi T., Tamaoka K., Furusawa C., Ono N., Suzuki S., Hirasawa T. et al. // BMC Genomics 2010. V. 11. P. 579. https://doi.org/10.1186/1471-2164-11-579
  50. Atsumi S., Wu T.Y., Machado I.M., Huang W.C., Chen P.Y., Pellegrini M. et al. // Mol. Syst. Biol. 2010. V. 6. P. 449. https://doi.org/10.1038/msb.2010.98
  51. Hartono S., Meijerink M.F.A., Abee T., Smid E.J., van Mastrigt O. // New Biotechnol. 2023. V. 78. P. 123–130.
  52. Becker J., Wittmann C. // Curr. Opin. Biotechnol. 2012. V. 23. P. 718–726.
  53. Mundhada H., Seoane J.M., Schneider K., Koza A., Christensen H.B., Klein T. et al. // Metab. Eng. 2017. V. 39. P. 141–150.
  54. Creamer K.E., Ditmars F.S., Basting P.J., Kunka K.S., Hamdallah I.N., Bush S.P. et al. // Appl. Environ. Microbiol. 2017. V. 83. P. e02736-16. https://doi.org/10.1128/AEM.02736-16
  55. Niu F.X., He X., Wu Y.Q., Liu J.Z. // Front. Microbiol. 2018. V. 9. P. 1623. https://doi.org/10.3389/fmicb.2018.01623
  56. Matson M.M., Cepeda M.M., Zhang A., Case A.E., Kavvas E.S., Wang X. et al. // Metab. Eng. 2022. V. 69. P. 50–58.
  57. Rychel K., Tan J., Patel A., Lamoureux C., Hefner Y., Szubin R. et al. // Cell Rep. 2023. V. 42. P. 113105. https://doi.org/10.1016/j.celrep.2023.113105
  58. Cavero-Olguin V.H., Rahimpour F., Dishisha T., Alvarez-Aliaga M.T., Hatti-Kaul R. // Process Biochem. 2021. V. 110. P. 223–230.
  59. Zhang W., Tao Y., Wu M., Xin F., Dong W., Zhou J., et al. // Process Biochem. 2020. V. 98. P. 76–82.
  60. Ghoshal M., Bechtel T.D., Gibbons J.G., McLandsborough L. // Front. Microbiol. 2023. V. 14. P. 1285421. https://doi.org/10.3389/fmicb.2023.1285421
  61. Kim Y.Y., Kim J.C., Kim S., Yang J.E., Kim H.M., Park H.W. // Food Res. Int. 2024.V. 175. P. 113731. https://doi.org/10.1016/j.foodres.2023.113731 Xia H., Kang Y., Ma Z., Hu C., Yang Q., Zhang X., et al. // Microb. Cell Fact. 2022. V. 21. P. 269. https://doi.org/10.1186/s12934-022-01996-x
  62. Gong A., Liu W., Lin Y., Huang L., Xie Z. // Microbiol. Spectr. 2023. V. 11. P. e0132623. https://doi.org/10.1128/spectrum.01326-23
  63. Yao L., Jia Y., Zhang Q., Zheng X., Yang H., Dai J. et al. // Front. Microbiol. 2024. V. 14. P. 1333777. https://doi.org/10.3389/fmicb.2023.1333777
  64. Friedman L., Alder J.D., Silverman J.A. // Antimicrob. Agents Chemother. 2006. V. 50. P. 2137–2145.
  65. Charusanti P., Fong N.L., Nagarajan H., Pereira A.R., Li H.J., Abate E.A., et al. // PLoS One 2012. V. 7. P. e33727. https://doi.org/10.1371/journal.pone.0033727
  66. Çakar Z.P., Seker U.O.S., Tamerler C., Sonderegger M., Sauer U. // FEMS Yeast Res. 2005. V. 5. P. 569–578.
  67. Sauer U. // Eng. Biotechnol. 2001. V. 73. P. 130–166.
  68. Portnoy V.A., Bezdan D., Zengler K. // Curr. Opin. Biotechnol. 2011. V. 22. P. 590–594.
  69. Choe D., Lee J.H., Yoo M., Hwang S., Sung B.H., Cho S. et al. // Nat. Commun. 2019. V. 10. P. 935. https://doi.org/10.1038/s41467-019-08888-6
  70. Dunham M.J. // Methods Enzymol. 2010. V. 470. P. 487-507.
  71. Giannakou K., Cotterrell M., Delneri D. // Front. Genet. 2020. V. 11 P. 916. https://doi.org/10.3389/fgene.2020.00916
  72. Gassler T., Baumschabl M., Sallaberger J., Egermeier M., Mattanovich D. // Metab. Eng. 2022. V. 69. P. 112–121.
  73. Liu Z., Radi M., Mohamed E.T. T., Feist A.M., Dragone G., Mussatto S.I. // Bioresour. Technol. 2021. V. 333. P. 125171. https://doi.org/10.1016/j.biortech.2021.125171
  74. Semumu T., Gamero A., Boekhout T., Zhou N. // World J. Microbiol. Biotechnol. 2022. V. 38. P. 48. https://doi.org/10.1007/s11274-021-03226-9
  75. Fernandes T., Osório C., Sousa M.J., Franco-Duarte R. // J. Fungi 2023. V. 9. P. 186. https://doi.org/10.3390/jof9020186
  76. Dolpatcha S., Phong H.X., Thanonkeo S., Klanrit P., Yamada M., Thanonkeo P. // Sci. Rep. 2023. V. 13. P. 21000. https://doi.org/10.1038/s41598-023-48408-7
  77. Bodinaku I., Shaffer J., Connors A.B., Steenwyk J.L., Biango-Daniels M.N., Kastman E.K. et al. // Мbio 2019. V. 10. P. e02445-19. https://doi.org/10.1128/mBio.02445-19
  78. Du Z.-Y., Zienkiewicz K., Pol N.V., Ostrom N.E., Benning C., Bonito G.M. // Elife 2019. V. 8. P. e47815. https://doi.org/10.7554/eLife.47815
  79. Kale S.P., Bhatnagar D., Bennett J.W. // Mycol. Res. 1994. V. 98. P. 645–652.
  80. Horn B.W., Dorner J.W. // Mycologia 2002. V. 94. P. 741–751.
  81. Voyles J., Johnson L.R., Rohr J., Kelly R., Barron C., Miller D. et al. // Oecologia 2017. V. 184. P. 363–373.
  82. Valero-Jiménez C.A., van Kan J.A.L., Koenraadt C.J.M., Zwaan B.J., Schoustra S.E. // Evol. Appl. 2017. V. 10. P. 433–443.
  83. de Crecy E., Jaronski S., Lyons B., Lyons T.J., Keyhani N.O. // BMC Biotechnol. 2009. V. 9. P. 74. https://doi.org/10.1186/1472-6750-9-74
  84. Han J.O., Naeger N.L., Hopkins B.K., Sumerlin D., Stamets P.E., Carris L.M. et al. // Sci. Rep. 2021. V. 11. P. 10582. https://doi.org/10.1038/s41598-021-89811-2
  85. Wang G., Li Q., Zhang Z., Yin X., Wang B., Yang X. // J. Ind. Microbiol. Biotechnol. 2023. V. 50. P. kuac023. https://doi.org/10.1093/jimb/kuac023

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».