Phage Antibodies for Kanamycin Detection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Recombinant antibodies specific to kanamycin were obtained using a sheep display library of scFv fragments (Griffin.1) and the possibility of their use for the determination of kanamycin by dot-immunoassay was demonstrated. The minimum detectable concentration of kanamycin is 1 μg/mL (distinguishable label binding other than background). It has been shown that anti-kanamycin phage antibodies are specific for kanamycin and do not interact with other antibiotics (neomycin, tetracycline, ampicillin, gentamicin). Anti-kanamycin phage antibodies are a promising alternative to monoclonal antibodies for use in the determination of kanamycin.

About the authors

O. I. Guliy

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Author for correspondence.
Email: guliy_olga@mail.ru
Russia, 410049, Saratov

S. S. Evstigneeva

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Email: guliy_olga@mail.ru
Russia, 410049, Saratov

S. A. Staroverov

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS); Saratov State Vavilov Agrarian University

Email: guliy_olga@mail.ru
Russia, 410049, Saratov; Russia, 410049, Saratov

A. S. Fomin

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Email: guliy_olga@mail.ru
Russia, 410049, Saratov

O. A. Karavaeva

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Email: guliy_olga@mail.ru
Russia, 410049, Saratov

References

  1. Willats W.G.T. // Plant Mol. Biol. 2002. V. 50. P. 837–854. https://doi.org/10.1023/A:1021215516430
  2. Wang L.-F., Yu M. // Curr. Drug Targets. 2004. V. 5. P. 1–15. https://doi.org/10.2174/1389450043490668
  3. Кузьмичева Г.А., Белявская В.А. // Биомедицинская химия. 2016. Т. 62. № 5. С. 481–495. Kuzmicheva G.A., Belyavskaya V.A. // Biochem. Moscow Suppl. Ser. В. 2017. V. 11. Р. 1–15. https://doi.org/10.18097/PBMC20166205481
  4. Smith G.P. // Science. 1985. V. 228. P. 1315–1317. https://doi.org/10.1126/science.4001944
  5. McCafferty J., Griffiths A.D., Winter G., Chiswell D.J. // Nature. 1990. V. 348. P. 552–554. https://doi.org/10.1038/348552a0
  6. Smith G.P., Petrenko V.A. // Chem. Rev. 1997. V. 97. P. 391–410. https://doi.org/10.1021/cr960065d
  7. Chassagne S., Laffly E., Drouet E., Hérodin F., Lefranc M.-P., Thullier P. // Mol. Immunol. 2004. V. 41. P. 539–546. https://doi.org/10.1016/j.molimm.2004.03.040
  8. Jacobsson K., Rosander A., Bjerketorp J., Frykberg L. // Biol. Proced. Online. 2003. V. 5. P. 123–135. https://doi.org/10.1251/bpo54
  9. Charlton K.A., Moyle S., Porter A.J.R., Harris W.J. // J. Immunol. 2000 V. 164. P. 6221–6229. https://doi.org/10.4049/jimmunol.164.12.6221
  10. Bashir S., Paeshuyse J. // Antibodies. 2020. V. 9. P. 21. https://doi.org/10.3390/antib9020021
  11. Тикунова Н.В., Морозова В.В. // Acta Nat. 2009. Т. 1. С. 22–31. doi.org/ Tikunova N.V., Morozova V.V. // Acta Nat. 2009. V. 1. P. 20–28. https://doi.org/10.32607/20758251-2009-1-3-20-28
  12. Zhao H., Nie D., Hu Y., Chen Z., Hou Z., Li M., Xue X. // Molecules. 2023. V. 28. P. 2621. https://doi.org/10.3390/molecules28062621
  13. Guliy O.I., Evstigneeva S.S., Dykman L.A. // Biosens Bioelectron. 2023. V. 222. P. 114909. https://doi.org/10.1016/j.bios.2022.114909
  14. Tang H., Gao Y., Han J. // Int J Mol Sci. 2023. V. 24 (4). P. 4176. https://doi.org/10.3390/ijms24044176
  15. Mahdavi S.Z.B., Oroojalian F., Eyvazi S., Hejazi M., Baradaran B., Pouladi N. et al. // Int J Biol Macromol. 2022. V. 208. P. 421–442. https://doi.org/10.1016/j.ijbiomac.2022.03.113
  16. Li L., Wu S., Si Y., Li H., Yin X., Peng D. // Compr Rev Food Sci Food Saf. 2022. V. 21. P. 4354–4377. https://doi.org/10.1111/1541-4337.13018
  17. Пристенский Д.В., Староверов С.А., Ермилов Д.Н., Щеголев С.Ю., Дыкман Л.А. // Биомедицинская химия. 2007. Т. 53. С. 57–64. Pristensky D.V., Staroverov S.A., Ermilov D.N., Shchyogolev S.Y., Dykman L.A. // Biochem. Moscow Suppl. Ser. В. 2007. V. 1. P. 249–253. https://doi.org/10.1134/S1990750807030146
  18. Staroverov S.A., Sidorkin V.A., Fomin A.S., Shchyogolev S.Y., Dykman L.A. // J. Vet. Sci. 2011. V. 12. P. 303–307. https://doi.org/10.4142/jvs.2011.12.4.303
  19. Staroverov S.A., Volkov A.A., Fomin A.S., Laskavuy V.N., Mezhennyy P.V., Kozlov S.V. et al. // J. Immunoassay Immunochem. 2015. V. 36. P. 100–110. https://doi.org/10.1080/15321819.2014.899257
  20. Staroverov S.A., Kozlov S.V., Fomin A.S., Gabalov K.P., Khanadeev V.A., Soldatov D.A. et al. // ADMET DMPK. 2021. V. 9. P. 255–266. https://doi.org/10.5599/admet.1023
  21. Гулий О.И., Алсовэйди А.К.М., Фомин А.С., Габалов К.П., Староверов С.А., Караваева О.А. // Прикл. биохимия и микробиология. 2022. Т. 58. № 5. С. 513–519. Guliy O.I., Alsowaidi A.K., Fomin A.S., Gabalov K.P., Staroverov S.S., Karavaeva O.A. // Appl. Biochem. Microbiol. 2022. V. 58. № 5. P. 646–651. https://doi.org/10.1134/S000368382205008810.1134/S0003683822050088https://doi.org/10.31857/S0555109922050087
  22. Durante-Mangoni E., Grammatikos A., Utili R., Falagas M.E. // Int. J. Antimicrob. Agents. 2009. V. 33. P. 201–205. https://doi.org/10.1016/j.ijantimicag.2008.09.001
  23. Jiang M., Karasawa T., Steyger P.S. // Front. Cell Neurosci. 2017. V. 11. P. 308. https://doi.org/10.3389/fncel.2017.00308
  24. Shavit M., Pokrovskaya V., Belakhov V., Baasov T. // Bioorg. Med. Chem. 2017. V. 25. P. 2917–2925. https://doi.org/10.1016/j.bmc.2017.02.068
  25. Tang M., Li F., Yang M., Zhang Y. // J. Environ. Sci. (China). 2020. V. 97. P. 11–18. https://doi.org/10.1016/j.jes.2020.04.032
  26. Jin Y., Jang J.W., Han C.H., Lee M.H. // J Vet Sci. 2006. V. 7(2). P. 111–117. https://doi.org/10.4142/jvs.2006.7.2.111
  27. Pietschmann J., Dittmann D., Spiegel H., Krause H.J., Schröper F. // Foods. 2020. V. 9. P. 1773. https://doi.org/10.3390/foods9121773
  28. Li C., Zhang Y., Eremin S.A., Yakup O., Yao G., Zhang X. // Food Chem. 2017. V. 227. P. 48–54. https://doi.org/10.1016/j.foodchem.2017.01.058
  29. DeCastro A.F., Place J.D., Lam C.T., Patel C. // Antimicrob Agents Chemother. 1986. V. 29. № 6. P. 961–964. https://doi.org/10.1128/AAC.29.6.961
  30. Wei Q., Zhao Y., Du B., Wu D., Li H., Yang M. // Food Chem. 2012. V. 134. № 3. P. 1601–1606. https://doi.org/10.1016/j.foodchem.2012.02.126
  31. Самсонова Ж.В., Щелокова О.С., Иванова Н.Л., Рубцова М.Ю., Егоров А.М. // Прикл. биохимия и микробиология. 2005. Т. 41. № 6. С. 668–675. Samsonova Z.V., Shchelokova O.S., Ivanova N.L., Rubtsova M.Y., Egorov A.M. // Appl. Biochem. Microbiol. 2005. V. 41. № 6. P. 589–595. https://doi.org/10.1007/s10438-005-0107-4
  32. Charlton K.A., Moyle S., Porter A.J., Harris W.J. // J. Immunol. 2000. V. 164. P. 6221–6229. https://doi.org/10.4049/jimmunol.164.12.6221
  33. Smith G.P., Scott J.K. // Methods Enzymol. 1993. V. 217. P. 228–257. https://doi.org/10.1016/0076-6879(93)17065-D
  34. Shah K., Maghsoudlou P. // Br. J. Hosp. Med. 2016. V. 77. P. 98–101.
  35. Frens G. // Nat. Phys. Sci. 1973. V. 241. P. 20–22. https://doi.org/10.1038/physci241020a0
  36. Guliy O.I., Zaitsev B.D., Burygin G.L., Karavaeva O.A., Fomin A.S., Staroverov S.A., Borodina I.A. // Ultrasound Med. Biol. 2020. V. 46. P. 1727–1737. https://doi.org/10.1016/j.ultrasmedbio.2020.03.014
  37. European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption, 2021. “Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2019 and 2020”. (EMA/58183/2021).
  38. Jin Y., Jang J.-W., Han C.-H., Lee M.-H. //J. Vet. Sci. 2006. V. 7(2). P. 111–117.
  39. Воронежцева О.В., Еремин С.А., Ермолаева Т.Н. // Вестник ВГУ, серия: Химия. Биология. Фармация. 2009. № 2. С. 11–17.
  40. Zhao Y., Wei Q., Xu C., Li H., Wu D., Cai Y., Mao K., Cui Z., Du B. // Sens. Actuators B Chem. 2011. V. 155. № 2. P. 618–625. https://doi.org/10.1016/j.snb.2011.01.019
  41. Shinko, E.I., Farafonova, O.V., Ermolaeva, T.N. // Zavodskaya Laboratroiya. Diagnostika Materialov. 2021. V. 87. № 12. P. 11–16. https://doi.org/10.26896/1028-6861-2021-87-12-12-17
  42. Shinko E.I., Farafonova O.V., Shanin I.A., Eremin S.A., Ermolaeva T.N. // Anal. Lett. 2022. V. 55. № 7. P. 1164–1177. https://doi.org/10.1080/00032719.2021.1991364
  43. Bizina E.V., Farafonova O.V., Zolotareva N.I., Grazhulene S.S., Ermolaeva T.N. // J. Anal. Chem. 2022. V. 77. № 4. P. 458–465. https://doi.org/10.1134/S1061934822040049

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (536KB)
3.

Download (701KB)
4.

Download (309KB)
5.

Download (172KB)
6.

Download (311KB)

Copyright (c) 2023 О.И. Гулий, С.С. Евстигнеева, С.А. Староверов, А.С. Фомин, О.А. Караваева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies